A PROOF OF THE CORONA CONJECTURE FOR FINITE OPEN RIEMANN SURFACES¹

BY NORMAN L. ALLING

Communicated by A. M. Gleason, September 17, 1963

For an open Riemann surface X the corona conjecture is the following: let B(X) be the algebra of bounded analytic functions on X and let $\mathfrak{M}(X)$ be the space of maximal ideals of B(X); then X is dense in $\mathfrak{M}(X)$. Carleson [3] has proved that the corona conjecture is true for the open unit disk D. We will sketch a proof of the following extension of Carleson's Theorem.

THEOREM. If X is a finite open Riemann surface, then X is dense in $\mathfrak{M}(X)$.

By a finite open Riemann surface is meant a proper, open, connected subset of a compact Riemann surface W whose boundary Γ is also the boundary of W-X and consists of a finite number of closed analytic arcs. Since W-X has an interior we may employ the Riemann-Roch Theorem to show that B(X) has enough functions to separate points and provide each point in X with a local uniformizer. Such a surface X therefore admits a natural homeomorphic imbedding into $\mathfrak{M}(X)$; thus the corona conjecture is seen to be meaningful.

Let X be a finite open Riemann surface. Ahlfors [1] has shown that there exists an analytic mapping p_0 of \overline{X} into the plane such that $p = p_0 | \overline{X}$ is an *n*-fold covering of X onto D and $p_0(\Gamma) = \overline{D} - D$. Since Γ consists of closed analytic arcs, no ramification occurs on $\overline{D} - D$. Clearly p^* , the adjoint of p, is a C-isomorphism of B(D) into B(X), C being the complex field. Let $B(D)^*$ denote the range of p^* , and for $f \in B(D)$ let $p^*(f) = f^*$.

Let σ_k denote the *k*th elementary symmetric function on *n* letters. For $z \in D$ let $p^{-1}(z) = \{x_1(z), \dots, x_n(z)\}$, each appearing to its multiplicity. Given $f \in B(X)$, $\sigma_k(f(x_1(z)), \dots, f(x_n(z)))$ is in B(D). Thus, as is well known, B(X) is integrally dependent on $B(D)^*$.

Given $N \in \mathfrak{M}(X)$ let $M^* = N \cap B(D)^*$ and let $P(N) = (p^*)^{-1}(M^*)$. Since $\mathfrak{M}(X)$ and $\mathfrak{M}(D)$ have the weak topology, P is continuous. Further, P is an extension of p. Since B(X) is integrally dependent on $B(D)^*$, P is surjective. For $f \in B(D)((B(X)))$ let \hat{f} denote the natural extension of f to $\mathfrak{M}(D)((\mathfrak{M}(X)))$. (See Hoffman [4, Chapter 10] for details.) Given $f \in B(D)$, $\hat{f}P = f^*$. Let z denote the identity function

¹ This research was supported in part by National Science Foundation grant NSF-GP-379.