DUALITY AND RADON TRANSFORM FOR SYMMETRIC SPACES

BY S. HELGASON¹

Communicated by G. D. Mostow, July 3, 1963

1. The dual space of a symmetric space. Let S be a symmetric space (that is a Riemannian globally symmetric space), and let $I_0(S)$ denote the largest connected group of isometries of S in the compact open topology. It will always be assumed that S is of the noncompact type, that is $I_0(S)$ is semisimple and has no compact normal subgroup $\neq \{e\}$. Let l denote the rank of S; then S contains flat totally geodesic submanifolds of dimension l. These will be called *planes* in S.

Let o be any point in S, K the isotropy subgroup of $G = I_0(S)$ at oand \mathfrak{f}_0 and \mathfrak{g}_0 their respective Lie algebras. Let $\mathfrak{g}_0 = \mathfrak{f}_0 + \mathfrak{p}_0$ be the corresponding Cartan decomposition of \mathfrak{g}_0 . Let E be any plane in Sthrough o, \mathfrak{a}_0 the corresponding maximal abelian subspace of \mathfrak{p}_0 and A the subgroup $\exp(\mathfrak{a}_0)$ of G. Let C be any Weyl chamber in \mathfrak{a}_0 . Then the dual space of \mathfrak{a}_0 can be ordered by calling a linear function λ on \mathfrak{a}_0 positive if $\lambda(H) > 0$ for all $H \in C$. This ordering gives rise to an Iwasawa decomposition of G, G = KAN, where N is a connected nilpotent subgroup of G. It can for example be described by

$$N = \left\{ z \in G \middle| \lim_{t \to \infty} \exp(-tH)z \exp(tH) = e \right\},$$

H being an arbitrary fixed element in C. The group N depends on the triple (o, E, C). However, well-known conjugacy theorems show that if N' is the group defined by a different triple (o', E', C') then $N' = gNg^{-1}$ for some $g \in G$.

DEFINITION. A *horocycle* in S is an orbit of a subgroup of the form gNg^{-1} , g being any element in G.

Let $t \rightarrow \gamma(t)$ (t real) be any geodesic in S and put $T_t = s_{t/2}s_0$ where s_r denotes the geodesic symmetry of S with respect to the point $\gamma(\tau)$. The elements of the one-parameter subgroup T_t (t real) are called *transvections* along γ . Two horocycles ξ_1, ξ_2 are called *parallel* if there exists a geodesic γ intersecting ξ_1 and ξ_2 under a right angle such that $T \cdot \xi_1 = \xi_2$ for a suitable transvection T along γ . For each fixed $g \in G$, the orbits of the group gNg^{-1} form a parallel family of horocycles.

Let M and M', respectively, denote the centralizer and normalizer of A in K. The group W = M'/M, which is finite, is called the Weyl group.

¹ This work was supported in part by the National Science Foundation, NSF GP-149.