AN ELEMENTARY ESTIMATE FOR THE k-FREE INTEGERS¹

BY ECKFORD COHEN

Communicated by George Whaples, December 24, 1962

1. Introduction. In this note k will denote a fixed integer >1. Let Q_k denote the sequence of k-free integers, that is, the integers whose prime factors are all of multiplicity $\langle k$. Also, let $\zeta(k)$ denote the sum of the series, $\sum_{n=1}^{\infty} n^{-k}$.

In this paper we prove the identity,

(1)
$$\sum_{r=1}^{\infty} \left(\frac{\mu(r)}{J_k(r)} \right) c_k(n,r) = \begin{cases} \zeta(k) & \text{if } n \in Q_k, \\ 0 & \text{if } n \notin Q_k, \end{cases}$$

where $\mu(r)$ is the inversion function of number theory, $J_k(r)$ the Jordan totient of order k, and $c_k(n, r)$ is the generalized Ramanujan sum defined by (3) below. This is a special case of a much more general result proved in [4, Theorem 6]. In view of the intrinsic interest of the relation (1), an independent proof of its validity seems justified.

As a consequence of (1), we prove, without resorting to remainder estimates of series, the following asymptotic formula for the number $Q_k(x)$ of integers of Q_k not exceeding x:

(2)
$$Q_k(x) = x/\zeta(k) + O(x^{1/k+\epsilon}),$$

for all $\epsilon > 0$ (see Remark 2, §3). If one assumes an estimate for the remainder of the series $\sum_{n=1}^{\infty} n^{-s}$, s > 1, (2) can be shown easily to hold with $\epsilon = 0$ (see for example, [7, §18.6; 3, §2]).

The method employed in the proof of (2) is essentially a generalization and refinement of a method introduced by Carmichael [1]. Carmichael obtained approximations for the average order of certain arithmetical functions using Ramanujan's trigonometric series expansions, in connection with an estimate involving Ramanujan's sum, $c(n, r) = c_1(n, r)$. The present discussion employs the more general sum $c_k(n, r)$ introduced by the author [2] and an appraisal for $c_k(n, r)$ which is sharper than the corresponding estimate of Carmichael (see (9) below).

2. Proof of (1). The function $c_k(n, r)$ is defined by

(3)
$$c_k(n, r) = \sum_{a \pmod{r}; (a, r^k)_k=1} \exp(2\pi i a n/r^k),$$

 $^{^1}$ This research was supported in part by the National Science Foundation grant G-19012.