AN ELEMENTARY ESTIMATE FOR THE k-FREE INTEGERS ${ }^{1}$

BY ECKFORD COHEN
Communicated by George Whaples, December 24, 1962

1. Introduction. In this note k will denote a fixed integer >1. Let Q_{k} denote the sequence of k-free integers, that is, the integers whose prime factors are all of multiplicity $<k$. Also, let $\zeta(k)$ denote the sum of the series, $\sum_{n=1}^{\infty} n^{-k}$.

In this paper we prove the identity,

$$
\sum_{r=1}^{\infty}\left(\frac{\mu(r)}{J_{k}(r)}\right) c_{k}(n, r)= \begin{cases}\zeta(k) & \text { if } n \in Q_{k} \tag{1}\\ 0 & \text { if } n \notin Q_{k}\end{cases}
$$

where $\mu(r)$ is the inversion function of number theory, $J_{k}(r)$ the Jordan totient of order k, and $c_{k}(n, r)$ is the generalized Ramanujan sum defined by (3) below. This is a special case of a much more general result proved in [4, Theorem 6]. In view of the intrinsic interest of the relation (1), an independent proof of its validity seems justified.

As a consequence of (1), we prove, without resorting to remainder estimates of series, the following asymptotic formula for the number $Q_{k}(x)$ of integers of Q_{k} not exceeding x :

$$
\begin{equation*}
Q_{k}(x)=x / \zeta(k)+O\left(x^{1 / k+\epsilon}\right), \tag{2}
\end{equation*}
$$

for all $\epsilon>0$ (see Remark 2, §3). If one assumes an estimate for the remainder of the series $\sum_{n=1}^{\infty} n^{-s}, s>1$, (2) can be shown easily to hold with $\epsilon=0$ (see for example, [7, §18.6; 3, §2]).

The method employed in the proof of (2) is essentially a generalization and refinement of a method introduced by Carmichael [1]. Carmichael obtained approximations for the average order of certain arithmetical functions using Ramanujan's trigonometric series expansions, in connection with an estimate involving Ramanujan's sum, $c(n, r)=c_{1}(n, r)$. The present discussion employs the more general sum $c_{k}(n, r)$ introduced by the author [2] and an appraisal for $c_{k}(n, r)$ which is sharper than the corresponding estimate of Carmichael (see (9) below).
2. Proof of (1). The function $c_{k}(n, r)$ is defined by

$$
\begin{equation*}
c_{k}(n, r)=\sum_{a(\bmod r) ;\left(a, r^{k}\right)_{k}=1} \exp \left(2 \pi i a n / r^{k}\right), \tag{3}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ This research was supported in part by the National Science Foundation grant G-19012.

