# NORMAL CONGRUENCE SUBGROUPS OF THE $t \times t$ MODULAR GROUP ${ }^{1}$ 

BY M. NEWMAN<br>Communicated by A. M. Gleason, June 5, 1963

Let $\Gamma$ denote the group of rational integral $t \times t$ matrices of determinant 1. If $n$ is a positive integer, $\Gamma(n)$ denotes the principal congruence subgroup of $\Gamma$ of level $n$, consisting of all elements of $\Gamma$ congruent modulo $n$ to a scalar matrix. The subgroup of $\Gamma(n)$ consisting of all elements of $\Gamma$ congruent modulo $n$ to the identity matrix is denoted by $\Gamma_{1}(n)$. Then $\Gamma(n), \Gamma_{1}(n)$ are normal subgroups of $\Gamma$. A subgroup $G$ of $\Gamma$ containing a principal congruence subgroup $\Gamma(n)$ is termed a congruence subgroup, and is said to be of level $n$ if $n$ is the least such integer. Notice that $\Gamma_{1}(n)$ is not in general a congruence subgroup, according to the definition above.

Let $p$ be a prime. Let $\operatorname{SL}(t, p)$ denote the group of $t \times t$ matrices with elements from $\mathrm{GF}(p)$ and determinant 1 , and let $H(t, p)$ denote the normal subgroup of $\operatorname{SL}(t, p)$ consisting of all scalar matrices. Then

$$
\mathrm{SL}(t, p) \cong \Gamma / \Gamma_{1}(p), \quad H(t, p) \cong \Gamma(p) / \Gamma_{1}(p)
$$

and $\mathrm{SL}(t, p), H(t, p)$ are of orders

$$
p^{t^{2}-1} \prod_{j=2}^{t}\left(1-p^{-j}\right),(t, p-1)
$$

respectively. In his book on the linear groups [1] Dickson proves that for $t>2, H(t, p)$ is a maximal normal subgroup of $\operatorname{SL}(t, p)$ and this of course implies that $\Gamma(p)$ is a maximal normal subgroup of $\Gamma$. This result is used to prove the theorem that follows:

Theorem 1. Suppose that $t>2$. Then every normal congruence subgroup of odd level of $\Gamma$ is a principal congruence subgroup.

The theorem is also true for $t=2$, if the level is prime to 6 . (The case $t=2$ for the group of linear fractional transformations has been treated in [3].) Since the structure of the proof of Theorem 1 is identical with that of the proof for $t=2$ given in [3], we only indicate the points of difference, and refer the reader to [3] for full details. The proof is arranged for an induction and what is actually proved is the slightly more general theorem that follows:

[^0]
[^0]:    ${ }^{1}$ The preparation of this note was supported by the Office of Naval Research.

