study any divisible semigroup, we need consider all congruences of $\bar{R}=\tilde{\Pi} \Gamma_{\alpha} R_{\alpha}$. For this purpose the following general result is used: A congruence of a commutative cancellative semigroup S is determined by a system of ideals of S and a system of subgroups of the quotient group of S.

References

1. L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958.
2. V. R. Hancock, Commutative Schreier extensions of semi-groups, Dissertation, Tulane University of Louisiana, New Orleans, La., 1960.
3. L. Ya. Kulikov, On the theory of Abelian groups of arbitrary power, Mat. Sb . (N.S.) 16(58) (1945), 129-162. (Russian)
4. T. Tamura and D. G. Burnell, A note on the extension of semigroups with operators, Proc. Japan Acad. 38 (1962), 495-498.
5. ——, Extension of groupoids with operators (to appear).
6. T. Tamura, Commutative divisible semigroups (to appear).

University of California, Davis

ALMOST LOCALLY FLAT EMBEDDINGS OF S^{n-1} IN S^{n}

BY J. C. CANTRELL
Communicated by Deane Montgomery, May 7, 1963

1. Introduction. In this paper we use the terminology introduced by Brown in [2]. We consider an ($n-1$)-sphere S embedded in S^{n} and try to determine if the components of $S^{n}-S$ have closures that are n-cells (i.e. if S is flat). Brown has shown that if S is locally flat at each of its points, then S is bi-collared [2]. Hence, in this case, S is flat. The principal result of this paper is that if S is not flat in S^{n}, $n>3$, and E is the set of points at which S fails to be locally flat, then E contains more than one point. This is a fundamental point at which the embedding problems for $n>3$ differ from those for $n=3$. Throughout this paper we will assume that $n>3$.
2. Outline of proof of principal result. By combining Theorem 1 of [2] and Theorem 2 of [1] one can establish the following.

Lemma 1. Let S be an ($n-1$)-sphere in S^{n} and G a component of $S^{n}-S$. If S is locally collared in $\mathrm{Cl} G$, then S is collared in $\mathrm{Cl} G$ and $\mathrm{Cl} G$ is an n-cell.

