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study any divisible semigroup, we need consider all congruences of 
]R= | J a jRa. For this purpose the following general result is used: A 
congruence of a commutative cancellative semigroup S is determined 
by a system of ideals of 5 and a system of subgroups of the quotient 
group of 5. 
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1. Introduction. In this paper we use the terminology introduced 
by Brown in [2]. We consider an (w--i)-sphere S embedded in 5n 

and try to determine if the components of 5n — S have closures that 
are n-cells (i.e. if 5 is flat). Brown has shown that if S is locally flat 
at each of its points, then 5 is bi-collared [2]. Hence, in this case, 5 
is flat. The principal result of this paper is that if S is not flat in 5n, 
n>3, and E is the set of points at which S fails to be locally flat, then 
E contains more than one point. This is a fundamental point at 
which the embedding problems for n>3 differ from those for w*=3. 
Throughout this paper we will assume that n>3. 

2. Outline of proof of principal result. By combining Theorem 1 of 
[2] and Theorem 2 of [l] one can establish the following. 

LEMMA 1. Let S be an (n — 1)-sphere in Sn and G a component of 
Sn — 5. If S is locally collared in CI G, then S is collared in Cl G and 
Cl G is an n*celL 


