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Let H be a Hubert space, with real or complex scalars. A function 
F: H-+H is called monotonie provided, for any xu a^G-H", we have 
Re(#i—#2, Fxi — Fx2)^0. If ( ^ ) is replaced by ( > ) , it is strictly 
monotonie, and if 0 is replaced by c||xi--#2||2, with c>0, it is strongly 
monotonie. Examples are: the gradient of a convex (resp. strictly 
or strongly convex) function, the negative of a linear dissipative oper
ator, a linear operator satisfying Re(x, i<#)^c||x||2 (the hypothesis 
of a form of the Lax-Milgram Lemma), and so on. 

A variant, due to F. E. Browder, of a theorem of the author [5, 
Corollary to Theorem 4] asserts that a continuous, everywhere-
defined strongly monotonie function has a continuous everywhere-
defined inverse. (Browder has also generalized the theorem.) These 
results are used in the proofs of the following theorems: 

THEOREM 1. If F is everywhere-defined, continuous, and monotonie, 
and satisfies for some real M 

(1) 11 #|| > M implies Re (x, Fx) ^ 0 

then the equation Fx = 0 has a solution, which is unique if F is strictly 
monotonie. 

THEOREM 2. If K and F are everywhere-defined, continuous, and 
monotonie, K is linear, and in addition F is a bounded operator and 
satisfies (1), then the u Hammer stein equation" x+KFx = 6 has a solu
tion ; the solution is unique if either K or F is strictly monotonie. 

A (nonlinear) operator is called "bounded" if it maps bounded sets 
into bounded sets. 

A VARIANT ON THEOREM 2. If K is strongly monotonie, the hypotheses 
of boundedness of F can be dropped from Theorem 2. 

The proofs will appear in [2]. The application of Theorem 2 to non-
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