BOUNDED APPROXIMATION BY POLYNOMIALS ${ }^{1}$

BY L. A. RUBEL AND A. L. SHIELDS
Communicated by Maurice Heins, April 22, 1963.

We announce a complete solution to the following problem. If G is an arbitrary bounded open set in the complex plane, which com-plex-valued functions in G can be obtained as the bounded pointwise limits in G of a sequence of polynomials?

Theorem. Given an arbitrary bounded open set G in the complex plane, and a complex-valued function f defined on G. There exists a sequence $\left\{p_{n}\right\}$ of polynomials that are uniformly bounded on G and that converge pointwise on G to f if and only if f has an extension F that is bounded and holomorphic on G^{*}, where G^{*} is the inside of the outer boundary of G.

More precisely, G^{*} is the complement of the closure of the unbounded component of the complement of the closure of G.

In a certain sense, this result lies somewhere between Runge's theorem and Mergelyan's theorem [3]. The correct formulation of our theorem is in terms of sequences, and not topological closure. Indeed, for a certain bounded open set G, there exists a function f and functions f_{n} such that (i) each f_{n} is the bounded limit of a sequence of polynomials, (ii) f is the bounded limit of f_{n}, but (iii) f is not the bounded limit of any sequence of polynomials.

With G and G^{*} as above, we write $B_{H}(G)$ for the set of bounded holomorphic functions on G, and $B_{H}\left(G^{*}: G\right)$ for the set of functions on G that have a bounded holomorphic extension to G^{*}, and $P(G)$ for the set of functions on G that can be boundedly approximated on G by a sequence of polynomials. The theorem now reads:

$$
P(G)=B_{H}\left(G^{*}: G\right)
$$

Even if G is connected and simply connected, it may happen that G^{*} has several components. We define $G^{\#}$ as the union of those components of G^{*} that intersect G. Clearly, $B_{H}\left(G^{*}: G\right)=B_{H}\left(G^{*}: G\right)$.

As a corollary to the theorem, we get a characterization of those bounded open sets G on which each bounded holomorphic function can be boundedly approximated by polynomials, namely $P(G)$ $=B_{H}(G)$ if and only if $B_{H}(G)=B_{H}\left(G^{*}: G\right)$; in other words, if and only if the inner boundary of G is a set of removable singularities for all bounded holomorphic functions on G. The inner boundary of

[^0]
[^0]: ${ }^{1}$ This research was partially supported by the National Science Foundation.

