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Let 5 be a compact Riemann surface of genus g^2, h: S-+S an 
automorphism of order N, and H the cyclic group of order N gener
ated by h. One has a representation of H by letting it act on the g 
complex-dimensional space A\ of abelian differentials of the first 
kind on 5 by h: <p—*ph for all <pG.Ai. At each point P £ 5 there is a 
gap sequence y(P) =7i(P), • • • , y0(P) where the 7y(P) are integers 
satisfying 1 = 7i(P) <72(P) < • • • <y0{P) <2g such that there is no 
function on S having a pole of order jj(P) at P and everywhere else 
finite. The complementary integers to y(P) in the sequence of integers 
from 1 to 2g are the nongaps at P. A point is a Weierstrass point if 
Y0(P)>g. 

In [3] the following was proved: 
(I) Suppose P = h(P) is a fixed point for h with gap sequence 

7i> • • • > 7* and that h rotates at P by e, i.e., if z is a local parameter 
at P, z{P) = 0, then h(z) = ez+ • • • , eN = 1. Then, with respect to a 
suitable basis for Ai, h is represented by the diagonal matrix (h) 
= d iag (e?i, €*», • • • , €**)• 

A corollary of this is 
(II) If P = h(P) is not a Weierstrass point then h has at most four 

fixed points. Thus if h has more than four fixed points all its fixed 
points are Weierstrass points. 

Let r be the inhomogeneous modular group, T(N) the principal 
congruence subgroup of level N>2, S(N) the compactified funda
mental domain for T(N) which is a Riemann surface of genus g(N) 
= l+iV2(iVr--6)/24lLltf ( l~ l / £ 2 ) where the product is over primes 
dividing N. For details see Chapter 1 of [2]. T/T(N) is a group of 
automorphisms of S(N) whose fixed points are at three kinds of 
points. Firstly, parabolic points (cusps), equivalent under T/T(N) 
to 00 which is fixed under the cyclic group of order N generated by 
(the coset of) T: r—»r + l. Secondly, elliptic points of order 2, equiv
alent to i = V~-l which is fixed under the cyclic group of order 2 
generated by S: r—> — 1/r. Thirdly, elliptic points of order 3, equiva
lent to p = e2vilz which is fixed under the cyclic group of order 3 gener-
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