ON LINKED BINARY REPRESENTATIONS OF PAIRS OF INTEGERS: SOME THEOREMS OF THE ROMANOV TYPE ${ }^{1}$

BY G. J. RIEGER

Communicated by P. T. Bateman, March 7, 1963

1. Introduction. Let us denote by N the sequence $\{1,2,3, \cdots\}$, by p a prime, by (a, b) the greatest common divisor of a and b, by $[a, b]$ the least common multiple of a and b, by $\{*: \cdots\}$ resp. $A\{*: \cdots\}$ the set resp. number of ${ }^{*}$ with the properties \cdots, by μ the Moebius function, by C an absolute positive constant and by $C\left(^{*}\right)$ a positive constant depending on ${ }^{*}$ only.

Suppose $N_{j} \subset N(j=1,2,3,4)$ and denote by $y_{1} \sim y_{2}$ an arbitrary relation ($=$ linking) with $y_{1,2} \in N$. For instance, $\left[y_{1} \sim y_{2}\right]$: $=\left[\left(y_{1}, y_{2}\right)=1\right]$ resp. $\left[y_{1} \sim y_{2}\right]:=\left[y_{1}=y_{2}\right]$ can be considered a weak resp. strong linking. By a linked binary representation of a pair m, n with $m \in N$ and $n \in N$ we mean a solution $x_{1}, x_{2}, x_{3}, x_{4}$ of the Diophantine system $x_{1}+x_{2}=m \wedge x_{3}+x_{4}=n \wedge x_{j} \in N_{j}(j=1,2,3,4) \wedge x_{2} \sim x_{4}$. Various generalizations are obvious (more summands, triples, etc.). We do not intend to give a detailed and general study of the questions arising in this context. We rather prefer to investigate two special problems of this type with \sim being $=$; they are inspired by the following two well-known results of Romanov:

$$
E_{a}:=\left\{m: m=p+v^{a} \wedge p \text { prime } \wedge v \in N\right\} \quad(1<a \in N)
$$

and

$$
F_{a}:=\left\{m: m=p+a^{v} \wedge p \text { prime } \wedge v \in N\right\} \quad(a \in N)
$$

have positive asymptotic density [1, pp. 63-70].
2. On Romanov's first theorem. Generalizing the result for E_{a}, we show that the set $\left\{m, n: m=p_{1}+v^{a} \wedge n=p_{2}+v^{a} \wedge p_{1,2}\right.$ prime $\left.\wedge v \in N\right\}$, considered as a set of lattice points in the plane, has positive asymptotic density in the plane:

Theorem 1. For $1<a \in N$ there exist constants $C_{1}(a)$ and $C_{2}(a)$ such that $x>C_{1}(a)$ implies

$$
\begin{aligned}
& A_{1}(x, a):=A\left\{m, n: m<x \wedge n<x \wedge m=p_{1}+v^{a} \wedge\right. \\
&\left.n=p_{2}+v^{a} \wedge p_{1,2} \text { prime } \wedge v \in N\right\}>C_{2}(a) x^{2} .
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ With support from NSF grant G-16305 to Purdue University.

