RANDOM DISTRIBUTION FUNCTIONS ${ }^{1}$

BY LESTER E. DUBINS ${ }^{2}$ AND DAVID A. FREEDMAN ${ }^{2}$

Communicated by J. L. Doob, March 14, 1963

1. Introduction. A random distribution function F is a measurable map from a probability space (Ω, \mathfrak{F}, Q) to the space Δ of distribution functions on the closed unit interval I, where Δ is endowed with its natural Borel σ-field, that is, the smallest σ-field containing the customary weak* topology. It determines a prior probability measure $P=Q F^{-1}$ in the space Δ. Of course, F is essentially the same as the stochastic process $\left\{F_{t}, 0 \leqq t \leqq 1\right\}$ on (Ω, \mathcal{F}, Q), where $F_{t}(\omega)=F(\omega)(t)$. Therefore, this note can be thought of as dealing with a certain class of random distribution functions, or a class of stochastic processes, or a class of prior probabilities.

Which class? Practically any base probability μ on the Borel subsets of the unit square S determines a random distribution function F and so a prior probability P_{μ} in Δ, which will be described somewhat informally in §2, by explaining how to select a value of F, i.e., a distribution function F, at random. $\S \S 3,4$ and 5 describe some properties of P_{μ}. Proofs will be given elsewhere. For ease of exposition, we assume that μ concentrates on, that is, assigns probability 1 to, the interior of S.
2. The construction. To select a value F of \boldsymbol{F} at random, begin by selecting a point (x, y) from the interior of S according to μ. The horizontal and vertical lines through (x, y) divide S into four rectangles; consider the closed lower left rectangle L and the upper right one R. The unique (affine) transformation of the form (u, v) $\rightarrow(\alpha u+\beta, \gamma v+\delta), \alpha$ and γ positive, which maps S onto L carries μ into a probability μ_{L} concentrated on L. The probability μ_{R} is defined in a similar way. Now select a point $\left(x_{L}, y_{L}\right)$ at random from the interior of L according to μ_{L}, and a point $\left(x_{R}, y_{R}\right)$ at random from the interior of R according to μ_{R}. As before, $\left(x_{L}, y_{L}\right)$ determines four subrectangles of L, and (x_{R}, y_{R}) determines four subrectangles of R. Consider the lower left subrectangle $L L$ in L, the upper right subrectangle $R L$ in L, and the two analogous subrectangles $L R$ and $R R$ in R. The

[^0]
[^0]: ${ }^{1}$ Prepared with the partial support of the National Science Foundation, Grant GP-10.
 ${ }^{2}$ We are grateful to Leonard J. Savage for asking us whether there are natural probabilities with interesting properties on the space of all probabilities (on a given space), and to David Blackwell for his interest which persisted through many helpful conversations.

