TWO THEOREMS CONCERNING FUNCTIONS HOLOMORPHIC ON MULTIPLY CONNECTED DOMAINS

BY E. L. $STOUT^1$

Communicated by Walter Rudin, March 25, 1963

1. Let Ω be a finitely connected plane domain whose boundary, $\partial\Omega$, consists of the circles Γ_0 , Γ_1 , \cdots , Γ_n . We assume Γ_j lies in the interior of Γ_0 for $j=1, 2, \cdots, n$. Let Δ_0 be the interior of Γ_0 and let Δ_j be the exterior of Γ_j , $j=1, 2, \cdots, n$. We then have $\Omega = \bigcap_{j=0}^n \Delta_j$. Let $H_{\infty}[\Omega]$ be the collection of all bounded holomorphic functions in Ω . We shall say that a set S of points of Ω is an interpolation set for Ω if given a bounded complex valued function w on S there is $f \in H_{\infty}[\Omega]$ such that f(z) = w(z) for all $z \in S$. If $\{z_n\}_{n=1}^{\infty}$ is a sequence in Ω , without limit points in Ω , we write $\{z_n\} = S_0 \cup S_1 \cup \cdots \cup S_n$ where the S_j are pairwise disjoint and where the only limit points of S_j lie in Γ_j , $j=0, 1, \cdots, n$.

In the present note we sketch proofs for the following two theorems:

THEOREM A. The sequence $\{z_n\}$ is an interpolation set for Ω if and only if each S_j is an interpolation set for the disc Δ_j .

THEOREM B. Let f_1, f_2, \dots, f_m be functions in $H_{\infty}[\Omega]$ such that $|f_1(z)| + |f_2(z)| + \dots + |f_m(z)| \ge \delta > 0$ for all $z \in \Omega$. Then there exist functions $g_1, g_2, \dots, g_m \in H_{\infty}[\Omega]$ such that $f_1g_1 + f_2g_2 + \dots + f_mg_m = 1$.

L. Carleson [2] has established Theorem B in case Ω is the open unit disc. He has also proved [1] that the sequence $\{z_n\}_{n=1}^{\infty}$ is an interpolation sequence for the open unit disc if and only if there is a $\delta > 0$ such that

$$\prod_{n\neq k} \left| \frac{z_n - z_k}{1 - \bar{z}_n z_k} \right| > \delta$$

for $k = 1, 2, 3, \cdots$. For a discussion and alternative proof see [3, pp. 194–208].

2. Outline of the proof of Theorem A. Let B_j be the Blaschke product associated with the disc Δ_j and the set of points S_j , $j=0, \dots, n$. Note that there is an $\eta > 0$ such that $|B_j(z)| > \eta$ for $z \in S_k$ if $k \neq j$.

¹ National Science Foundation Graduate Fellow.