LIE GROUP REPRESENTATIONS ON POLYNOMIAL RINGS ${ }^{1}$

BY BERTRAM KOSTANT ${ }^{2}$
Communicated by Raoul Bott, February 1, 1963

0. Introduction. 1. Let G be a group of linear transformations on a finite dimensional real or complex vector space X. Assume X is completely reducible as a G-module. Let S be the ring of all complexvalued polynomials on X, regarded as a G-module in the obvious way, and let $J \subseteq S$ be the subring of all G-invariant polynomials on X.

Now let J^{+}be the set of all $f \in J$ having zero constant term and let $H \subseteq S$ be any graded subspace such that $S=J^{+} S+H$ is a G-module direct sum. It is then easy to see that

$$
\begin{equation*}
S=J H \tag{0.1.1}
\end{equation*}
$$

(Under mild assumptions H may be taken to be the set of all G harmonic polynomials on X. That is, the set of all $f \in S$ such that $\partial f=0$ for every homogeneous differential operator ∂ with constant coefficients, of positive degree, that commutes with G.)

One of our main concerns here is the structure of S as a G-module. Regard S as a J-module with respect to multiplication. Matters would be considerably simplified if S were free as a J-module. One shows easily that S is J-free if and only if $S=J \otimes H$. This, however, is not always the case. For example S is not J-free if G is the two element group $\{I,-I\}$ and $\operatorname{dim} X \geqq 2$. On the other hand one has

Example 1. It is due to Chevalley (see [2]) that if G is a finite group generated by reflections then indeed $S=J \otimes H$. Furthermore the action of G on H is equivalent to the regular representation of G.

Example 2. S is J-free in case G is the full rotation group (with respect to some Euclidean metric on X. For convenience assume in this example that $\operatorname{dim} X \geqq 3$). Note that the decomposition of a polynomial according to the relation $S=J \otimes H$ is just the so-called "separation of variables" theorem for polynomials. This is so because J is the ring of radial polynomials and H is the space of all harmonic polynomials (in the usual sense).

Now, for any $x \in X$, let $O_{x} \subseteq X$ denote the G-orbit of x and let $S\left(O_{x}\right)$ be the ring of all functions on O_{x} defined by restricting S to O_{x}. Since J reduces to constants on any orbit it follows that (0.1.1) in-

[^0]
[^0]: ${ }^{1}$ This research was supported by National Science Foundation grant NSF. G19992.

 2 The author is an Alfred P. Sloan fellow.

