SINGULAR INTEGRALS AND PARABOLIC EQUATIONS

BY B. FRANK JONES, JR.

Communicated by A. Zygmund, February 11, 1963

1. Introduction. A. P. Calderón and A. Zygmund [1; 2] have studied a class of singular integrals, proving that such integrals generate continuous linear transformations of L^p into L^p , 1 . Oneof the many applications of their results is the derivation of integral $estimates for derivatives of solutions of the Poisson equation <math>\Delta u = f$, where $\Delta = \partial^2 / \partial x_1^2 + \cdots + \partial^2 / \partial x_n^2$. Corresponding results have been obtained for a different class of singular integrals; an application of these results is the derivation of integral estimates for derivatives of solutions of the parabolic equation $u_t - \Delta u = f$. We shall briefly outline the development of the singular integrals of Calderón and Zygmund as applied to the equation $\Delta u = f$, and then give the parallel development for the singular integrals associated with the equation $u_t - \Delta u = f$.

2. The equation $\Delta u = f$. In *n*-dimensional Euclidean space \mathbb{R}^n let $\Gamma(x)$ be the fundamental solution of Laplace's equation,

$$\Gamma(x) = -\frac{1}{2\pi} \log \frac{1}{|x|}, \qquad n = 2,$$

$$\Gamma(x) = \frac{1}{(2-n)\omega_n} |x|^{2-n}, \qquad n>2,$$

where $|x| = (x_1^2 + \cdots + x_n^2)^{1/2}$ and ω_n is the area of the sphere |x| = 1. Let

(1)
$$u(x) = \int_{\mathbb{R}^n} \Gamma(x-y) f(y) dy$$

where $f \in L^{p}(\mathbb{R}^{n})$. Then [1] the second partial derivatives of u exist almost everywhere, and

(2)
$$u_{x_ix_j} = \frac{1}{n} \delta_{ij}f(x) + \int_{\mathbb{R}^n} k_{ij}(x-y)f(y)dy,$$

where $\delta_{ii} = 1$, $\delta_{ij} = 0$, $i \neq j$, and

$$k_{ij}(x) = \Gamma_{x_i x_j} = \frac{1}{\omega_n} \mid x \mid^{-n} \left(\delta_{ij} - n \frac{x_i x_j}{\mid x \mid^2} \right).$$

In particular, $\Delta u = f$. The kernel $k = k_{ij}$ has the properties that