THE PERMANENT ANALOGUE OF THE HADAMARD DETERMINANT THEOREM

BY MARVIN MARCUS
Communicated by A. M. Gleason, April 11, 1963

1. Statement of results. In $[2 ; 3]$ it was conjectured that if $A=\left(a_{i j}\right)$ is an n-square positive semi-definite hermitian matrix then

$$
\begin{equation*}
\operatorname{per} A \geqq \prod_{i=1}^{n} a_{i i} \tag{1}
\end{equation*}
$$

Here per A denotes the permanent of $A: \operatorname{per} A=\sum_{\sigma} \prod_{i=1}^{n} a_{i \sigma(i)}$ where the summation is over the whole symmetric group of degree n. It was announced [1] and later proved [2] that per $(A) \geqq \operatorname{det} A$ and the Hadamard determinant theorem suggests that the product of the main diagonal entries of A in fact separates the permanent and the determinant of A. In this note we sketch a proof of an inequality that is substantially stronger than (1). Let $A(i)$ denote the principal submatrix of A obtained by deleting row and column i.

Theorem. If A is an ($r+1$)-square positive semi-definite hermitian matrix then

$$
\begin{equation*}
(r+1) a_{11} \operatorname{per} A(1) \geqq \operatorname{per} A \geqq a_{11} \operatorname{per} A(1) \tag{2}
\end{equation*}
$$

If A has a zero row then (2) is equality throughout. If A has no zero row then the lower equality holds if and only if $A=a_{11}+A(1)$; the upper equality holds if and only if A is of rank 1.

We remark that what is true for $A(1)$ is true for any $A(i)$ because the permanent is unaltered by permutation of the rows and columns.

By an obvious induction on r we have the
Corollary. If A is an n-square positive semi-definite hermitian matrix then

$$
\begin{equation*}
\operatorname{per} A \geqq \prod_{i=1}^{n} a_{i i} \tag{3}
\end{equation*}
$$

with equality if and only if A has a zero row or A is a diagonal matrix.
2. Proof of theorem. We outline the proof of the theorem. Let U be an n-dimensional unitary space with inner product (x, y). For $1 \leqq r \leqq n$ define $U^{(r)}$ to be the space of r-tensors on U; that is, $U^{(r)}$ is the dual space of the space of all multilinear complex valued func-

