RALPH ABRAHAM

This follows from the continuity of F, as before. The proof of the theorem is complete.

References

1. D. Blackwell, *Controlled random walks*, Proceedings of the International Congress of Mathematicians, Vol. III, pp. 336-338, North-Holland, Amsterdam, 1956.

2. J. Hannan, Approximation to Bayes risk in repeated play, Annals of Mathematics Studies No. 39, Princeton Univ. Press, Princeton, N. J., 1957, pp. 97-139.

Institute for Defense Analyses and University of Chicago

TRANSVERSALITY IN MANIFOLDS OF MAPPINGS¹

BY RALPH ABRAHAM

Communicated by E. Spanier, January 14, 1963

1. Introduction. Let X and Y be differentiable manifolds and \mathfrak{A} a space of mappings from X to Y. A common problem in differential topology is to approximate a mapping in \mathfrak{A} by another in \mathfrak{A} which is transversal to a given submanifold $W \subset Y$. Thus if $\mathfrak{A}_{X,W}$ is the subspace of mappings transversal to W it is important to know if $\mathfrak{A}_{X,W}$ is dense in \mathfrak{A} . Some famous examples are the Whitney immersion and embedding theorems [8] and the Thom transversality theorem [4;7]. In the next section we give sufficient conditions for density in case \mathfrak{A} is a Banach manifold. The proof of the density theorem is indicated in the third section, and in the final section the Thom transversality theorem is obtained as a corollary.

2. Density theorems. Throughout this section X will be a manifold with boundary, Y and Z manifolds, $W \subset Y$ a submanifold (W, Y, Z without boundary) all of class C^r , $r \ge 1$, and modelled on Banach spaces (see [3] for definitions).

2.1. DEFINITION. A C^r mapping $f: X \to Y$ is transversal to W at a point $x \in X$ iff either $f(x) \notin W$, or $f(x) = w \in W$ and there exists a neighborhood U of $x \in X$ and a local chart (V, ψ) at $w \in Y$ such that

$$\psi: V \to E \times F: V \cap W \to E \times 0,$$

 $\pi_1 \circ \psi$ is a diffeomorphism of $V \cap W$ onto an open set of E, and $\pi_2 \circ \psi \circ f \mid U$ is a submersion [3, p. 20], where $\pi_1: E \times F \rightarrow E$ and

¹ This work has been partially supported by the Office of Naval Research under contract Nonr(G)-00098-62 and the National Science Foundation under grant G19136.