RESEARCH PROBLEMS - 3. Richard Bellman: Degrees of noncommutativity. - 1. Let X_1 and X_2 be two complex $N \times N$ matrices which do not commute. Introduce the norm of an $N \times N$ matrix Z by $\|Z\|^2 = \operatorname{tr}(Z\overline{Z}')$. What is the minimum of $\|X_1 Y_1\|^2 + \|X_2 Y_2\|^2$ over all $N \times N$ matrices Y_1 and Y_2 which do commute? Is there a general inequality connecting $\|X_1 Y_1\|^2$, $\|X_2 Y_2\|^2$, $\|X_1 X_2 X_2 X_1\|$, $\|Y_1 Y_2 Y_2 Y_1\|$? Extend the problem by means of different norms and by considerations of various types of operators in Hilbert space. - 2. Let X_1 and X_2 , as before, not commute. What is the minimum value over all complex scalars a_i of $||X_2 \sum_{k=0}^{N-1} a_k X_1^k||^2$, and how does the minimum behave as a function of N as $N \to \infty$? (Received February 25, 1963.) 4. Albert A. Mullin: Some related number-theoretic functions. The Fundamental theorem of arithmetic provides a unique decomposition of every natural number greater than 1 into a product of powers of distinct primes, the prime bases being arranged in their natural linear ordering. Consider such a decomposition. E.g., $48 = 2^4 \cdot 3$. Suppose that those exponents greater than 1, if any, are also expanded in the same way and that the exponents greater than 1, if any, of those exponents are so expanded, etc., until the process terminates as it always does in a finite number of steps. Call the final configuration consisting of primes alone a mosaic. Clearly the mosaic is different, in general, from the usual multiplicatively linear array of primes alone. E.g., the mosaic of 48 is $2^{2^2} \cdot 3$. There is a one-one effectively calculable map ν from the natural numbers onto the mosaics (identify the "empty" mosaic with 1), which is an alternate formulation of FTA. For any mosaic take the product of the primes alone that appear in it, thereby yielding a unique natural number called the *residuum* of the mosaic. E.g., the residuum of the mosaic of 48 is $2 \cdot 2 \cdot 2 \cdot 3 = 24$. Let ρ be the map from mosaics to the natural numbers associated with residua. Put $\psi = \rho(\nu(\cdot))$. Clearly ψ is an "interesting" integer-valued number-theoretic and algebraic map from the natural numbers *onto* the natural numbers. E.g., $\psi(a \cdot b) \not\geq \psi(a) \cdot \psi(b)$ with equality if $\gcd\{a, b\} = 1$; i.e., ψ is multiplicative. Also $\psi(n) \leq n$, for every natural number n. Further square-free natural numbers, among others, are invariant under ψ . Also $\psi(k) = k$ for infinitely many k and $\psi(m) \neq m$ for infinitely