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1. Introduction. The theory of Martin boundaries associated with 
Markov processes has been established for the two typical and 
simplest classes; Brownian motions [2; 6] and Markov chains on a 
denumerable space [3; 5; 9] . The purpose of this note is to give some 
general conditions under which one can construct the Martin bound­
ary and derive the Martin representation of excessive functions,1 gen­
eralizing the method in [ó] and [9]. Either of our conditions ((C), 
(D) or (E)) is satisfied, for example, by sufficiently wide classes of 
diffusion processes and space-time processes as well as by the two 
classes cited above and so our results can be connected with and 
applied to some subjects in analysis such as differential equations or 
convolution transforms. 

Two different cases are discussed separately. One of them (§3) is 
for the class of Markov processes such that there is a potential kernel 
of function type. In this case we shall also show a method of deter­
mining the potential kernel of function type which is somewhat differ­
ent from Hunt 's method in [4, I I I ] . The other case (§4) is for the 
class of regular step processes [lO] (including Markov chains) with 
the step measures having density functions. A full proof will appear 
elsewhere. 

2. Definitions and notations. Let S be a locally compact, noncom-
pact, separable Hausdorff space and Xy a temporally homogeneous 
Markov process on S satisfying Hunt 's condition (A) [4, I, pp. 48 -
50]. Following [ l ] , such X is called a Hunt process. For the details 
of the definition see [ l ; 4; 7] . Let xt denote the path functions of 
Xt Px and Ex the probabilities and expectations for X starting at x 
and a A the hitting time for a subset A of S, inf {*>0, xt<EA}. We 
shall always assume that X is transient: Px (<TKC< °°) = 1 for every x 
and every compact K of 5, where Kc means the complement of the 
set K. For a measurable function u defined on 5, Ex(u(xt)) and 
Ex(u(xaA)) are denoted by Htu(x) and HAU(X) respectively. We shall 
say u s superharmonic if it is positive2 and if it satisfies u(x) <^HACU(X) 

1 Meyer [7, Part II] also discussed this problem without introducing the bound­
ary. His approach is based on Choquet's representation theorem for compact convex 
sets. 

2 The word 'positive' is used in the sense of 'non-negative.' 
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