VECTOR-VALUED DISTRIBUTIONS AND THE SPECTRAL THEOREM FOR SELFADJOINT OPERATORS IN HILBERT SPACE

BY H. G. TILLMANN
Communicated by Edwin Hewitt, September 13, 1962

If A is a bounded linear operator (with spectrum S) in a Banachspace E, the functional calculus of Dunford-Gelfand-Taylor ${ }^{1}$ can be characterized as a continuous homomorphism $f \rightarrow f(A)$ of the algebra $\mathfrak{H}(S)^{2}$ of all holomorphic functions on S into the Banach algebra $\mathcal{L}(E)$ with the properties $f(A)=I$ if $f(z) \equiv 1$ and $f(A)=A$ if $f(z) \equiv z$. If E is a Hilbert space and $A=A^{*}$ a selfadjoint operator in E, there exist a much more general functional calculus $f \rightarrow f(A)=\int f(s) d E_{s}$, based on the spectral decomposition $A=\int s d E_{s}$ of A.

We will show how this extended calculus can be developed as a continuous extension of the analytic functional calculus in such a way, that we get a new and very natural proof of the spectral theorem for selfadjoint operators in Hilbert space.

1. The analytic functional calculus. If S is the spectrum of A the resolvent $R(s)=(A-s I)^{-1}$ is an operator valued, holomorphic function in the complement of S on the Riemann-sphere Ω, vanishing at ∞. If $f(z)$ is holomorphic on $S(:=$ holomorphic on a neighborhood of S), there exists a contour C, separating S from all singularities of f. Then

$$
\begin{equation*}
f(A)=(2 \pi i)^{-1} \int_{C} f(s) R(s) d s=(2 \pi i)^{-1} \int_{C} f(s)(A-s I)^{-1} d s \tag{1}
\end{equation*}
$$

is independent of C and $f \rightarrow f(A)$ is a homomorphism of the algebra $\mathscr{H}(S)$ of all such functions f into the algebra $\mathscr{L}(E)$ of bounded endomorphisms of E.

This homomorphism is uniquely determined by the properties:
(a) $f(z) \equiv 1 \frown f(A)=I$,
(b) $f(z) \equiv z \frown f(A)=A$,
(c) $f_{n}(z) \Rightarrow f(z)$ (uniformly in a certain neighborhood of S) \frown $f_{n}(A) \Rightarrow f(A)$ (in the norm topology of $\mathcal{L}(E)$).

In certain cases the homomorphism can be extended to larger classes of functions. We will study the extension to the class of differentiable functions on the real line.

[^0]
[^0]: ${ }^{1}$ See Dunford-Schwartz [1].
 ${ }^{2} \mathfrak{H C}(S)$ is a topological algebra with the natural topology defined in Köthe [2].

