VECTOR-VALUED DISTRIBUTIONS AND THE SPECTRAL THEOREM FOR SELFADJOINT OPERATORS IN HILBERT SPACE

BY H. G. TILLMANN

Communicated by Edwin Hewitt, September 13, 1962

If A is a bounded linear operator (with spectrum S) in a Banachspace E, the functional calculus of Dunford-Gelfand-Taylor¹ can be characterized as a continuous homomorphism $f \rightarrow f(A)$ of the algebra $\mathcal{K}(S)^2$ of all holomorphic functions on S into the Banach algebra $\mathcal{L}(E)$ with the properties f(A) = I if $f(z) \equiv 1$ and f(A) = A if $f(z) \equiv z$. If E is a Hilbert space and $A = A^*$ a selfadjoint operator in E, there exist a much more general functional calculus $f \rightarrow f(A) = \int f(s) dE_s$, based on the spectral decomposition $A = \int s dE_s$ of A.

We will show how this extended calculus can be developed as a continuous extension of the analytic functional calculus in such a way, that we get a new and very natural proof of the spectral theorem for selfadjoint operators in Hilbert space.

1. The analytic functional calculus. If S is the spectrum of A the resolvent $R(s) = (A - sI)^{-1}$ is an operator valued, holomorphic function in the complement of S on the Riemann-sphere Ω , vanishing at ∞ . If f(z) is holomorphic on S (:= holomorphic on a neighborhood of S), there exists a contour C, separating S from all singularities of f. Then

(1)
$$f(A) = (2\pi i)^{-1} \int_C f(s) R(s) ds = (2\pi i)^{-1} \int_C f(s) (A - sI)^{-1} ds$$

is independent of C and $f \rightarrow f(A)$ is a homomorphism of the algebra $\mathfrak{K}(S)$ of all such functions f into the algebra $\mathfrak{L}(E)$ of bounded endomorphisms of E.

This homomorphism is uniquely determined by the properties:

- (a) $f(z) \equiv 1 \frown f(A) = I$,
- (b) $f(z) \equiv z \frown f(A) = A$,

(c) $f_n(z) \Rightarrow f(z)$ (uniformly in a certain neighborhood of $S) \rightarrow f_n(A) \Rightarrow f(A)$ (in the norm topology of $\mathcal{L}(E)$).

In certain cases the homomorphism can be extended to larger classes of functions. We will study the extension to the class of differentiable functions on the real line.

¹ See Dunford-Schwartz [1].

² $\mathcal{K}(S)$ is a topological algebra with the natural topology defined in Köthe [2].