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1. Statement of result. We continue our study of the function 
spaces Z£, begun in [7]. We recall that f^Ll(En) when f=Ka*<l>, 
where <££!/ (£„) . Ka is the Bessel kernel, characterized by its Fourier 
transform Ka(x) * - (1 +1 x \ 2)~ a /2 . I t should also be recalled that the 
space L?, \<p < <*>, with k a positive integer, coincides with the space 
of functions which together with their derivatives up to and including 
order k belong to IS; (see [2]). 

I t will be convenient to give the functions in Lv
a their strict defini

tion. Thus we redefine them to have the value (Ka * cj>)(x) a t every 
point where this convolution converges absolutely. With this done, 
and if a—(n — m)/p>0, then the restriction of an fC£L%(En) to a 
fixed m-dimensional linear variety in En is well-defined (that is, it 
exists almost everywhere with respect to m-dimensional Euclidean 
measure). The problem that arises is of characterizing such restric
tions. 

The problem was previously solved in the following cases: 
(i) When p is arbitrary, but a = 1, in Gagliardo [3]. 
(ii) When p — 2> and a is otherwise arbitrary in Aronszajn and 

Smith [ l ] . In each case the solution may be expressed in terms of 
another function space, Wv

u, which consists of those ƒ £ ! / ( £ „ ) for 
which the norm2 

is finite, when 0 < a < l . When 0 < C K < 2 , there is a similar definition 
of Wa (consistent with the previous one for 0 < a < l ) which replaces 
the difference ƒ (x — y) —f(x) by the second difference ƒ (x — y) -\-f(x+y) 
— 2f(x). Finally for general a^2, the spaces W% are defined recur
rently by fGWl w h e n / G L ' and df/dxHGW*-lt k=ly • . • , ». 

In stating our result we let Em denote a fixed proper m dimensional 
subspace of Eny and Rf denote the restriction to Em of a function de
fined on En. 

1 The author wishes to acknowledge the support of the Alfred P. Sloan Foundation. 
2 Such norms were considered when w = l in [5]. The space is also considered in 

[ó] and [9]; in the latter it is denoted by A£*\ 

577 


