THE CHARACTERIZATION OF FUNCTIONS ARISING AS POTENTIALS. II

BY E. M. STEIN¹

Communicated by A. Zygmund, August 8, 1962

1. Statement of result. We continue our study of the function spaces L^p_{α} , begun in [7]. We recall that $f \in L^p_{\alpha}(E_n)$ when $f = K_{\alpha} * \phi$, where $\phi \in L^p(E_n)$. K_{α} is the Bessel kernel, characterized by its Fourier transform $K_{\alpha}(x)^{2} = (1 + |x|^{2})^{-\alpha/2}$. It should also be recalled that the space L^p_{k} , $1 , with k a positive integer, coincides with the space of functions which together with their derivatives up to and including order k belong to <math>L^p$; (see [2]).

It will be convenient to give the functions in L^p_{α} their strict definition. Thus we redefine them to have the value $(K_{\alpha} * \phi)(x)$ at every *point* where this convolution converges absolutely. With this done, and if $\alpha - (n-m)/p > 0$, then the restriction of an $f \in L^p_{\alpha}(E_n)$ to a fixed *m*-dimensional linear variety in E_n is well-defined (that is, it exists almost everywhere with respect to *m*-dimensional Euclidean measure). The problem that arises is of characterizing such restrictions.

The problem was previously solved in the following cases:

(i) When p is arbitrary, but $\alpha = 1$, in Gagliardo [3].

(ii) When p=2, and α is otherwise arbitrary in Aronszajn and Smith [1]. In each case the solution may be expressed in terms of another function space, W_{α}^{p} , which consists of those $f \in L^{p}(E_{n})$ for which the norm²

$$||f||_{p} + \left[\int_{E_{n}} \int_{E_{n}} \frac{|f(x-y) - f(x)|^{p}}{|y|^{n+\alpha p}} dx dy\right]^{1/p}$$

is finite, when $0 < \alpha < 1$. When $0 < \alpha < 2$, there is a similar definition of W^p_{α} (consistent with the previous one for $0 < \alpha < 1$) which replaces the difference f(x-y) - f(x) by the second difference f(x-y) + f(x+y)-2f(x). Finally for general $\alpha \ge 2$, the spaces W^p_{α} are defined recurrently by $f \in W^p_{\alpha}$ when $f \in L^p$ and $\partial f / \partial x_n \in W^p_{\alpha-1}$, $k = 1, \dots, n$.

In stating our result we let E_m denote a fixed proper *m* dimensional subspace of E_n , and Rf denote the restriction to E_m of a function defined on E_n .

¹ The author wishes to acknowledge the support of the Alfred P. Sloan Foundation.

² Such norms were considered when n=1 in [5]. The space is also considered in [6] and [9]; in the latter it is denoted by $\Lambda_{\alpha}^{p,p}$.