RESEARCH ANNOUNCEMENTS

Abstract

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

ADDITIVITY OF THE GENUS OF A GRAPH

BY JOSEPH BATTLE, FRANK HARARY, ${ }^{1}$ YUKIHIRO KODAMA, ${ }^{1}$ AND J. W. T. YOUNGS ${ }^{1}$

Communicated June 26, 1962
In this note a graph G is a finite 1 -complex, and an imbedding of G in an orientable 2 -manifold M is a geometric realization of G in M. The letter G will also be used to designate the set in M which is the realization of G. Manifolds will always be orientable 2-manifolds, and $\gamma(M)$ will stand for the genus of M. Given a graph G the genus $\gamma(G)$ of G is the smallest number $\gamma(M)$, for M in the collection of manifolds in which G can be imbedded.

A block of G is a subgraph B of G maximal with respect to the property that removing any single vertex of B does not disconnect B. (A block with more than two vertices is a "true cyclic element" in Whyburn [3].) Given G there is a unique finite collection \mathfrak{B} of blocks B of G such that $G=\bigcup B, B \in \mathfrak{B}$. The collection \mathfrak{B} is called the block decomposition of G. If G is connected and \mathfrak{B} contains k blocks; then they may be listed in an order B_{1}, \cdots, B_{k} such that

$$
\begin{align*}
& \bigcup_{1}^{j} B_{i} \text { is connected, and } B_{j+1} \cap \bigcup_{1}^{j} B_{i} \tag{1}\\
& \text { is a vertex of } G \\
& \\
& \text { for } j=1, \cdots,(k-1) .
\end{align*}
$$

A 2-cell imbedding of G is an imbedding in a manifold M such that each component of $(M-G)$ is an open 2-cell. (See Youngs [4]). The regional number $\delta(G)$ of a graph G is the maximum number of components of $(M-G)$ for all possible 2-cell imbeddings of G. In [4] it was shown that if G is connected then

$$
\begin{equation*}
\delta(G)=2-\chi(G)-2 \gamma(G) \tag{2}
\end{equation*}
$$

where $\chi(G)$ is the Euler characteristic of G.
The object of this note is to prove two formulas about the block decomposition of a connected graph G with k blocks B_{1}, \cdots, B_{k} :

[^0]
[^0]: ${ }^{1}$ Partial support for this research was provided by the U. S. Naval Research Laboratory and the National Science Foundation.

