# SINGULAR PERTURBATIONS 

BY A. ERDÉLYI ${ }^{1}$<br>Communicated February 7, 1962

Let $P_{\epsilon}$ designate the problem of finding a solution of the differential equation

$$
\epsilon y^{\prime \prime}+F\left(t, y, y^{\prime}, \epsilon\right)=0, \quad 0 \leqq t \leqq 1
$$

that satisfies the boundary conditions

$$
\begin{equation*}
y(0)=\alpha(\epsilon), \quad y(1)=\beta(\epsilon) \tag{2}
\end{equation*}
$$

Here $\epsilon$ is a small positive parameter approaching zero. We envisage circumstances under which $y=y(t, \epsilon)$ approaches a limit nonuniformly in $t$ as $\epsilon \rightarrow 0+$, the nonuniformity occurring at $t=0$. Accordingly, the limiting problem $P_{0}$ involves the differential equation

$$
\begin{equation*}
F\left(t, u, u^{\prime}, 0\right)=0, \quad 0 \leqq t \leqq 1 \tag{3}
\end{equation*}
$$

with the single boundary condition

$$
\begin{equation*}
u(1)=\beta(0) \tag{4}
\end{equation*}
$$

Partial derivatives will be denoted by subscripts, thus $F_{\nu}=\partial F / \partial y$, etc.

For a solution $u=u(t)$ of (3) we define the function $\phi$ and the region $D_{\delta}$ by

$$
\begin{aligned}
\phi(t)= & \int_{0}^{t} F_{y^{\prime}}\left(\tau, u(\tau), u^{\prime}(\tau), 0\right) d \tau \\
D_{\delta}= & {\left[\left(t, y, y^{\prime}, \epsilon\right): 0 \leqq t \leqq 1,|y-u(t)|<\delta\right.} \\
& \left.\left|y^{\prime}-u^{\prime}(t)\right|<\delta\left(1+\epsilon^{-1} e^{-\phi(t) / \epsilon}\right), 0<\epsilon<\epsilon_{0}\right]
\end{aligned}
$$

Assumptions. (A) The problem $P_{0}$, (3) and (4), possesses a solution $u$ which is twice continuously differentiable on $[0,1]$.
(B) For some $\delta>0, F$ possesses partial derivatives of the first and second orders with respect to $y$ and $y^{\prime}$ in $D_{\delta}$, and $F$ as well as these partial derivatives are continuous functions of $t, y, y^{\prime}$ (for fixed $\epsilon$ ).
(C) $F\left(t, u(t), u^{\prime}(t), \epsilon\right)=O(\epsilon) ; q(t, \epsilon)=F_{y}\left(t, u(t), u^{\prime}(t), \epsilon\right)=O(1)$; $p(t, \boldsymbol{\epsilon})=F_{y^{\prime}}\left(t, u(t), u^{\prime}(t), \boldsymbol{\epsilon}\right)=\phi^{\prime}(t)+\epsilon p_{1}(t, \epsilon)$ where $\phi$ is twice continu-

[^0]
[^0]:    ${ }^{1}$ This research was supported in part by the National Science Foundation under Grant No. NSF G-19914.

