ALGEBRAS OF DIFFERENTIABLE FUNCTIONS

BY K. DE LEEUW¹ AND H. MIRKIL²
Communicated by Walter Rudin, March 18, 1962

1. Classification of certain spaces of continuously differentiable functions of two variables. Denote by C_0 the space of all complex-valued continuous functions on the plane that are zero at infinity. Write $\|\cdot\|_{\infty}$ for the supremum norm on C_0 . Denote by D the dense subspace of C_0 consisting of infinitely differentiable functions with compact support.

Throughout we shall be concerned with differential operators of the form

the $a_{m,n}$ are complex constants. For each set \mathfrak{A} of such operators, we define $C_0(\mathfrak{A})$ to be the space of all f in C_0 having Af in C_0 (in the sense of Laurent Schwartz) for all A in \mathfrak{A} . Equivalently, $C_0(\mathfrak{A})$ is the completion of D under the seminorms

$$f \to ||f||_{\infty}$$
 and $f \to ||Af||_{\infty}$, A in α .

Each $C_0(\mathfrak{A})$ so defined is a translation-invariant space of functions; those that are furthermore invariant under rotations of the plane will be called *rotating spaces of differentiable functions*.

Certain of these spaces are familiar, namely the spaces C_0^N consisting of those functions in C_0 that have all derivatives of order $\leq N$ in C_0 , and the space C_0^∞ , which is $\bigcap_N C_0^N$. A rotating space of differentiable functions will be called *proper* if it is not one of the C_0^N and not C_0^∞ . Here is the classification of such spaces.

We use the notation

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \text{ and } \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

THEOREM 1.1. If a is a proper subset of

$$\{\partial^{m+n}/\partial z^m \partial \bar{z}^n \colon m+n=N\},\,$$

¹ This research is supported in part by the United States Air Force Office of Scientific Research under contract AF 49(638)-294.

² This research is supported in part by N.S.F. Grant G14242 and by the United States Air Force Office of Scientific Research under contract AF 49(638)-812.