## SOME RESULTS ON INVARIANT THEORY

## BY S. HELGASON1

Communicated by Felix Browder, April 11, 1962

1. Symmetric invariants. Let V be a finite-dimensional vector space over R. Each  $X \subseteq V$  gives rise (by parallel translation) to a vector field on V which we consider as a differential operator  $\partial(X)$  on V. The mapping  $X \rightarrow \partial(X)$  extends to an isomorphism of the complex symmetric algebra S(V) over V onto the algebra of all differential operators on V with constant complex coefficients. Let G be a subgroup of the general linear group GL(V). Let I(V) denote the set of G-invariants in S(V) and let  $I_+(V)$  denote the set of G-invariants without constant term. The group G acts on the dual space  $V^*$  of V by

$$(g \cdot v^*)(v) = v^*(g^{-1} \cdot v), \quad g \in G, v \in V, v^* \in V^*,$$

and we can consider  $S(V^*)$ ,  $I(V^*)$ ,  $I_+(V^*)$ . An element  $p \in S(V^*)$  (a polynomial function on V) is called G-harmonic if  $\partial(J)p = 0$  for each  $J \in I_+(V)$ . Let  $H(V^*)$  denote the set of G-harmonic polynomial functions.

Let  $V^c$  denote the complexification of V. Suppose B is a nondegenerate symmetric bilinear form on  $V^c \times V^c$ . If  $X \subset V^c$  let  $X^*$  denote the linear form  $Y \to B(X, Y)$  on V. The mapping  $X \to X^*$  extends to an isomorphism  $P \to P^*$  of S(V) onto  $S(V^*)$ . If G leaves B invariant then  $I(V)^* = I(V^*)$ .

We shall use the following notation: If E and F are linear subspaces of the associative algebra A then EF denotes the set of all sums  $\sum_{i} e_{i}f_{i}$ ,  $(e_{i} \in E, f_{i} \in F)$ .

THEOREM 1. Let B be a nondegenerate symmetric bilinear form on  $V \times V$  and let G be a Lie subgroup of GL(V) leaving B invariant. Suppose that either (1) G is compact and B positive definite or (2) G is connected and semisimple. Then

$$S(V^*) = I(V^*)H(V^*).$$

The case of a compact G was noted independently by B. Kostant. It is a simple consequence of the fact that under the standard strictly positive definite inner product on  $S(V^*)$  (invariant under G), the space  $H(V^*)$  is the orthogonal complement to the ideal in  $S(V^*)$  generated by  $I_+(V^*)$ . For the noncompact case, let  $\mathfrak{g}$  denote the complexification of the Lie algebra of G. It is not difficult to prove that

<sup>&</sup>lt;sup>1</sup> This work was supported by the National Science Foundation, NSF G-19684.