SOME RESULTS ON INVARIANT THEORY

BY S. HELGASON ${ }^{1}$
Communicated by Felix Browder, April 11, 1962

1. Symmetric invariants. Let V be a finite-dimensional vector space over R. Each $X \in V$ gives rise (by parallel translation) to a vector field on V which we consider as a differential operator $\partial(X)$ on V. The mapping $X \rightarrow \partial(X)$ extends to an isomorphism of the complex symmetric algebra $S(V)$ over V onto the algebra of all differential operators on V with constant complex coefficients. Let G be a subgroup of the general linear group $G L(V)$. Let $I(V)$ denote the set of G-invariants in $S(V)$ and let $I_{+}(V)$ denote the set of G-invariants without constant term. The group G acts on the dual space V^{*} of V by

$$
\left(g \cdot v^{*}\right)(v)=v^{*}\left(g^{-1} \cdot v\right), \quad g \in G, v \in V, v^{*} \in V^{*}
$$

and we can consider $S\left(V^{*}\right), I\left(V^{*}\right), I_{+}\left(V^{*}\right)$. An element $p \in S\left(V^{*}\right)$ (a polynomial function on V) is called G-harmonic if $\partial(J) p=0$ for each $J \in I_{+}(V)$. Let $H\left(V^{*}\right)$ denote the set of G-harmonic polynomial functions.

Let V^{C} denote the complexification of V. Suppose B is a nondegenerate symmetric bilinear form on $V^{c} \times V^{C}$. If $X \in V^{C}$ let X^{*} denote the linear form $Y \rightarrow B(X, Y)$ on V. The mapping $X \rightarrow X^{*}$ extends to an isomorphism $P \rightarrow P^{*}$ of $S(V)$ onto $S\left(V^{*}\right)$. If G leaves B invariant then $I(V)^{*}=I\left(V^{*}\right)$.

We shall use the following notation: If E and F are linear subspaces of the associative algebra A then $E F$ denotes the set of all sums $\sum_{i} e_{i} f_{i},\left(e_{i} \in E, f_{i} \in F\right)$.

Theorem 1. Let B be a nondegenerate symmetric bilinear form on $V \times V$ and let G be a Lie subgroup of $G L(V)$ leaving B invariant. Suppose that either (1) G is compact and B positive definite or (2) G is connected and semisimple. Then

$$
S\left(V^{*}\right)=I\left(V^{*}\right) H\left(V^{*}\right)
$$

The case of a compact G was noted independently by B. Kostant. It is a simple consequence of the fact that under the standard strictly positive definite inner product on $S\left(V^{*}\right)$ (invariant under G), the space $H\left(V^{*}\right)$ is the orthogonal complement to the ideal in $S\left(V^{*}\right)$ generated by $I_{+}\left(V^{*}\right)$. For the noncompact case, let g denote the complexification of the Lie algebra of G. It is not difficult to prove that

[^0]
[^0]: ${ }^{1}$ This work was supported by the National Science Foundation, NSF G-19684.

