OPERATOR AVERAGES¹

BY R. V. CHACON

Communicated by G. A. Hedlund, February 7, 1962

The object of this note is to state a general result the proof of which appears in [4] and which includes the ergodic theorem proved in [1] as well as the Hopf-Dunford-Schwartz ergodic theorem. Let (S, \mathfrak{F}, μ) be a σ -finite measure space, that is, let S be a set of points s, \mathfrak{F} a Borel field of subsets A of S and μ a σ -finite measure defined on \mathfrak{F} . Let L_1 be the Banach space of complex-valued integrable functions f(s) having S for their domain of definition. Dunford and Schwartz [5] have extended Hopf's ergodic theorem [6] as follows:

THEOREM. Let T be a linear operator of L_1 to L_1 with $||T|| \leq 1$, and with $(||T||_{\infty} \leq 1)$

ess. sup.
$$|Tg(s)| \leq \text{ess. sup.} |g(s)|$$
, each $g \in L_1 \cap L_{\infty}$.

Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}T^kf(s)$$

exists almost everywhere, for f in L_1 .

Ornstein and the author [1] proved the following theorem which was conjectured by Hopf [6]:

THEOREM. Let T be a linear operator of L_1 to L_1 with $||T|| \leq 1$ and with $T \geq 0$. Then

$$\lim_{n\to\infty} \frac{\sum\limits_{k=0}^{n} T^k f(s)}{\sum\limits_{k=0}^{n} T^k p(s)}$$

exists almost everywhere on $\{s: 0 < \sum_{k=0}^{\infty} T^k p(s) \leq +\infty\}$ for f and p in $L_1, p(s) \geq 0$ almost everywhere.

It is of course clear that neither result contains the other and that

¹ The work reported in this paper was carried out under a grant from the National Science Foundation.