RESEARCH ANNOUNCEIMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

INVARIANT QUADRATIC DIFFERENTIALS ${ }^{1}$

BY JOSEPH LEWITTES

Communicated by R. Bott, March 21, 1962
Let S be a compact Riemann surface of genus $g \geqq 2$ and h an automorphism (conformal homeomorphism onto itself) of $S . h$ generates a cyclic group $H=\left\{I, h, \cdots, h^{N-1}\right\}$ where N is the order of h. We shall assume that N is a prime number. Let D_{m} for an integer $m \geqq 0$ denote the space of meromorphic differentials on S and $A_{m} \subset D_{m}$ the subspace of finite analytic (without poles) differentials. We obtain representations of H by assigning to h the linear transformation of D_{m} in to itself by $h(\theta)=\theta h^{-1}$ for every $\theta \in D_{m}$. It is clear that h takes A_{m} into itself so that by restricting to A_{m} we have a representation of H by a group of linear transformations of a finite dimensional vector space.

In this note we are concerned with determining some of the properties of (h), the diagonal matrix for h, considering h as a linear transformation on the $3 g-3$ dimensional space A_{2} of quadratic differentials. Since $(h)^{N}=(I)$ it is clear that each diagonal element of (h) is an N th root of unity. If $\epsilon \neq 1$ is an N th root of unity, denote by n_{k} the multiplicity of $\epsilon^{k}(k=0,1, \cdots, N-1)$ in (h).

Let $\hat{S}=S / H$ be the orbit space of S under H. Then it is well known that \hat{S} can be given a conformal structure and the projection map $\pi: S \rightarrow \hat{S}$ is then analytic. The branch points of this covering are precisely at the t fixed points of $h, P_{1}, \cdots, P_{t} \in S, t \geqq 0$-here we make essential use of the assumption that N prime-each a branch point of order $N-1$. Let g_{1} be the genus of \hat{S}. The Riemann-Hurwitz formula reads $2 g-2=N\left(2 g_{1}-2\right)+(N-1) t$. Now clearly n_{0} is the dimension of that subspace of A_{2} which consists of H-invariant differentials, i.e., those satisfying $h(\theta)=\theta$.

Theorem 1. (i) n_{0}, the dimension of the space of H-invariant finite quadratic differentials, is $3 g_{1}-3+t$.
(ii) If $n_{k} \neq 0$ for some $k, 1 \leqq k \leqq N-1$, then

[^0]
[^0]: ${ }^{1}$ This is a brief edited excerpt from my thesis submitted to Yeshiva University, 1962.

