ON GROUPS WITH FINITELY MANY INDECOMPOSABLE INTEGRAL REPRESENTATIONS

BY A. HELLER AND I. REINER¹

Communicated by Daniel Zelinsky, January 19, 1962

1. Introduction. The purpose of this note is to sketch a proof of the following theorem.

THEOREM. If G is a finite group having finitely many non-isomorphic indecomposable integral representations then for no prime p does p^{3} divide the order of G.

It is known that the same hypothesis implies that all the Sylow subgroups of G are cyclic; thus they are cyclic of order p or p^2 . We do not know whether the converse is true. On the other hand, we have shown elsewhere [1] that a cyclic group of order p^2 has finitely many non-isomorphic integral representations.

In the same place it is shown that the above theorem follows from this proposition:

PROPOSITION. Let G be a cyclic group of order p^3 . Then G has infinitely many non-isomorphic indecomposable representations over the p-adic integers.

We outline below the proof of this proposition, which will appear in full elsewhere.

2. Construction of indecomposables. Let Λ be a ring such that the Krull-Schmidt theorem holds for finitely generated left Λ -modules; this is certainly the case for algebras of finite rank over a complete valuation ring [3]. We shall write Hom for Hom_A and Ext for Ext⁴_A.

Suppose that M and N are indecomposable Λ -modules such that Hom(M, N) = 0, Hom(N, M) = 0. If $M^{(k)}$ is a direct sum of k copies of M then Hom $(M^{(k)}, M^{(k)})$ may be identified with the ring of $k \times k$ matrices with entries in H = Hom(M, M). Also $\text{Ext}(N^{(u)}, M^{(t)})$ consists of $t \times u$ matrices with entries in Ext(N, M). If H' = Hom(N, N)then Ext(N, M) is an (H, H')-bimodule, and $t \times t$ matrices over Hand $u \times u$ matrices over H' operate in the obvious way on $\text{Ext}(N^{(u)}, M^{(t)})$.

We shall say that a matrix $X \in \text{Ext}(N^{(u)}, M^{(t)})$ is decomposable if there are invertible matrices T over H and U over H' such that

¹ The research of the second author was supported in part by a research contract with the Office of Naval Research.