ON GROUPS WITH FINITELY MANY INDECOMPOSABLE INTEGRAL REPRESENTATIONS

BY A. HELLER AND I. REINER ${ }^{1}$
Communicated by Daniel Zelinsky, January 19, 1962

1. Introduction. The purpose of this note is to sketch a proof of the following theorem.

Theorem. If G is a finite group having finitely many non-isomorphic indecomposable integral representations then for no prime p does p^{3} divide the order of G.

It is known that the same hypothesis implies that all the Sylow subgroups of G are cyclic; thus they are cyclic of order p or p^{2}. We do not know whether the converse is true. On the other hand, we have shown elsewhere [1] that a cyclic group of order p^{2} has finitely many non-isomorphic integral representations.

In the same place it is shown that the above theorem follows from this proposition:

Proposition. Let G be a cyclic group of order p^{3}. Then G has infinitely many non-isomorphic indecomposable representations over the p-adic integers.

We outline below the proof of this proposition, which will appear in full elsewhere.
2. Construction of indecomposables. Let Λ be a ring such that the Krull-Schmidt theorem holds for finitely generated left Λ-modules; this is certainly the case for algebras of finite rank over a complete valuation ring [3]. We shall write Hom for Hom ${ }_{\Lambda}$ and Ext for Ext ${ }_{A}^{1}$.

Suppose that M and N are indecomposable Λ-modules such that $\operatorname{Hom}(M, N)=0, \operatorname{Hom}(N, M)=0$. If $M^{(k)}$ is a direct sum of k copies of M then $\operatorname{Hom}\left(M^{(k)}, M^{(k)}\right)$ may be identified with the ring of $k \times k$ matrices with entries in $H=\operatorname{Hom}(M, M)$. Also $\operatorname{Ext}\left(N^{(u)}, M^{(t)}\right)$ consists of $t \times u$ matrices with entries in $\operatorname{Ext}(N, M)$. If $H^{\prime}=\operatorname{Hom}(N, N)$ then $\operatorname{Ext}(N, M)$ is an $\left(H, H^{\prime}\right)$-bimodule, and $t \times t$ matrices over H and $u \times u$ matrices over H^{\prime} operate in the obvious way on $\operatorname{Ext}\left(N^{(u)}, M^{(t)}\right)$.

We shall say that a matrix $X \in \operatorname{Ext}\left(N^{(u)}, M^{(t)}\right)$ is decomposable if there are invertible matrices T over H and U over H^{\prime} such that

[^0]
[^0]: ${ }^{1}$ The research of the second author was supported in part by a research contract with the Office of Naval Research.

