## RESEARCH PROBLEMS

29. Richard Bellman: Number theory.

Consider the linear differential operator of order $n$,

$$
\begin{equation*}
L_{n}(D)=D^{n}+p_{1}(t) D^{n-1}+\cdots+p_{n-1}(t) D+p_{n}(t) \tag{1}
\end{equation*}
$$

where the $p_{i}(t)$ are polynomials in $t$ with coefficients which are integers modulo $p$, a prime. The symbol $D$ is the derivative $d / d t$ with the usual properties.

The operator will be said to be reducible if we can write

$$
\begin{equation*}
L_{n}(D)=L_{m}(D) L_{r}(D)(\text { modulo } p) \tag{2}
\end{equation*}
$$

where $L_{m}(D)$ and $L_{r}(D)$ are linear operators of the same type of orders $m$ and $r$ respectively, $m+r=n$; and irreducible otherwise.

Let the degrees of $p_{1}(t), \cdots, p_{n}(t)$ as polynomials in $t$ be respectively $d_{1}, d_{2}, \cdots, d_{n}$, and let us call $L_{n}(d)$ of type $\left[n ; d_{1}, d_{2}, \cdots, d_{n}\right]$. Can one obtain expressions for the number of operators of type $\left[n ; d_{1}, d_{2}, \cdots, d_{n}\right.$ ] which are irreducible modulo $p$ ?

## 30. Richard Bellman: Number theory-generalized cyclotomic sums.

Can one obtain results for multidimensional cyclotomic sums of the form

$$
\begin{equation*}
S\left(x, \omega_{1}, \omega_{2}\right)=\sum_{m, n=0}^{p-1} \omega_{1}^{m} \omega_{2}^{n} \exp \left(2 \pi i x a^{m} b^{n} / p\right) \tag{1}
\end{equation*}
$$

where $\omega_{1}$ and $\omega_{2}$ are ( $p-1$ )st roots of unity and $a$ and $b$ are primitive roots modulo $p$, corresponding to those existing for the one-dimensional sums?

More generally, if the sequence $\left\{u_{m, n}\right\}$ satisfies two linear recurrence relations

$$
\begin{align*}
& u_{m, n} \equiv a_{1} u_{m-1, n}+b_{1} u_{m, n-1}+c_{1} u_{m-1, n-1}(p)  \tag{2}\\
& u_{m, n} \equiv a_{2} u_{m-1, n}+b_{2} u_{m, n-1}+c_{2} u_{m-1, n-1}(p)
\end{align*}
$$

with appropriate periodicity constraints on the boundary sequence $\left\{u_{0, n}\right\},\left\{u_{m, 0}\right\}$, can one obtain results for sums of the form

$$
S\left(x, \omega_{1}, \omega_{2}\right)=\sum_{m, n} \omega_{1}^{m} \omega_{2}^{n} \exp \left(2 \pi i x u_{m, n} / p\right)
$$

and for the generalized sums where the recurrence relations have the form

