SOME THEOREMS ON PERMUTATION POLYNOMIALS ${ }^{1}$

BY L. CARLITZ
Communicated by G. B. Huff, December 8, 1961

A polynomial $f(x)$ with coefficients in the finite field $G F(q)$ is called a permutation polynomial if the numbers $f(a)$, where $a \in G F(q)$ are a permutation of the a 's. An equivalent statement is that the equation

$$
\begin{equation*}
f(x)=a \tag{1}
\end{equation*}
$$

is solvable in $G F(q)$ for every a in $G F(q)$. A number of classes of permutation polynomials have been given by Dickson [1]; see also Rédéi [3].

In the present note we construct some permutation polynomials that seem to be new. Let $q=2 m+1$ and put

$$
\begin{equation*}
f(x)=x^{m+1}+a x \tag{2}
\end{equation*}
$$

We define

$$
\begin{equation*}
\psi(x)=x^{m} \tag{3}
\end{equation*}
$$

so that $\psi(x)=-1,+1$ or 0 according as x is a nonzero square, a nonsquare or zero in $G F(q)$. Thus (2) may be written as

$$
\begin{equation*}
f(x)=x(a+\psi(x)) \tag{4}
\end{equation*}
$$

We shall show that for proper choice of a, the polynomial $f(x)$ is a permutation polynomial. We assume that $a^{2} \neq 1$; then $x=0$ is the only solution in the field of the equation $f(x)=0$. Now suppose (i) $f(x)$ $=f(y), \psi(x)=\psi(y)$. It follows at once from (4) that $x=y$. Next suppose (ii) $f(x)=f(y), \psi(x)=-\psi(y)$. Then (4) implies

$$
\begin{equation*}
\psi\left(\frac{a+1}{a-1}\right)=-1 \tag{5}
\end{equation*}
$$

If we take

$$
\begin{equation*}
a=\frac{c^{2}+1}{c^{2}-1} \tag{6}
\end{equation*}
$$

where $c^{2} \neq \pm 1$ or 0 but otherwise is an arbitrary square of the field, it is evident that (5) is not satisfied. For $q \geqq 7$ such a choice of c^{2} is

[^0]
[^0]: ${ }^{1}$ Supported in part by National Science Foundation grant G-16485.

