DIFFERENTIABLE PERIODIC MAPS

BY P. E. CONNER AND E. E. FLOYD ${ }^{1}$
Communicated by Deane Montgomery, November 20, 1961

1. The bordism groups. This note presents an outline of the authors' efforts to apply Thom's cobordism theory [6] to the study of differentiable periodic maps. First, however, we shall outline our scheme for computing the oriented bordism groups of a space [1]. These preliminary remarks bear on a problem raised by Milnor [4]. A finite manifold is the finite disjoint union of compact connected manifolds with boundary each of which carries a C^{∞}-differential structure. The boundary of a finite manifold, B^{n}, is denoted by ∂B^{n}. A closed manifold is a finite manifold with void boundary. We now define the oriented bordism groups of a pair (X, A).

An oriented singular manifold in (X, A) is a map $f:\left(B^{n}, \partial B^{n}\right)$ $\rightarrow(X, A)$ of an oriented finite manifold. Such a singular manifold bords in (X, A) if and only if there is a finite oriented manifold W^{n+1} and a map $F: W^{n+1} \rightarrow X$ such that $B^{n} \subset \partial W^{n+1}$ as a finite regular submanifold whose orientation is induced by that of W^{n+1} and such that $F \mid B^{n}=f, F\left(\partial W^{n+1}-B^{n}\right) \subset A$. From two such oriented singular manifolds (B_{1}^{n}, f_{1}) and (B_{2}^{n}, f_{2}) a disjoint union ($B_{1}^{n} \cup B_{2}^{n}, f_{1} \cup f_{2}$) is formed with $B_{1}^{n} \cap B_{2}^{n}=\varnothing$ and $f_{1} \cup f_{2} \mid B_{i}^{n}=f_{i}, i=1$, 2. Obviously $-\left(B^{n}, f\right)$ $=\left(-B^{n}, f\right)$. We say that two singular manifold $\left(B_{1}^{n}, f_{1}\right)$ and $\left(B_{2}^{n}, f_{2}\right)$ are bordant in (X, A) if and only if the disjoint union ($B_{1}^{n} \cup-B_{2}^{n}, f_{1} \cup f_{2}$) bords in (X, A). By the well-known angle straightening device [5] this is shown to form an equivalence relation. The oriented bordism class of $\left(B^{n}, f\right)$ is written $\left[B^{n}, f\right]$ and the collection of all such bordism classes is $\Omega_{n}(X, A)$. An abelian group structure is imposed on $\Omega_{n}(X, A)$ by disjoint union, and then following Atiyah we refer to $\Omega_{n}(X, A)$ as an oriented bordism group of (X, A). The weak direct sum $\Omega_{*}(X, A)$ $=\sum_{0}^{\infty} \Omega_{n}(X, A)$ is a graded right module over the oriented Thom cobordism ring Ω. For any $f:\left(B^{n}, \partial B^{n}\right) \rightarrow(X, A)$ and any closed oriented manifold V^{m} the module product is given by $\left[B^{n}, f\right]\left[V^{m}\right]$ $=\left[B^{n} \times V^{m}, g\right]$ where $g(x, y)=f(x)$. For any map $\phi:(X, A) \rightarrow(Y, B)$ there is an induced homomorphism $\phi_{*}: \Omega_{n}(X, A) \rightarrow \Omega_{n}(Y, B)$ given by $\phi_{*}\left(\left[B^{n}, f\right]\right)=\left[B^{n}, \phi f\right]$. There is also $\partial_{*}: \Omega_{n}(X, A) \rightarrow \Omega_{n-1}(A)$ given by $\partial_{*}\left(\left[B^{n}, f\right]\right)=\left[\partial B^{n}, f \mid \partial B^{n} \rightarrow A\right]$. Actually $\phi_{*}: \Omega_{*}(X, A) \rightarrow \Omega_{*}(Y, B)$ and $\partial_{*}: \Omega_{*}(X, A) \rightarrow \Omega_{*}(A)$ are Ω-module homomorphisms of degree 0 and -1 .

[^0]
[^0]: ${ }^{1}$ The authors are both Alfred P. Sloan Fellows. This work was partially supported by Air Research and Development Command Contract No. AF49(638)-72, Project No. 47500.

