DIFFERENTIABLE PERIODIC MAPS

BY P. E. CONNER AND E. E. FLOYD¹ Communicated by Deane Montgomery, November 20, 1961

1. The bordism groups. This note presents an outline of the authors' efforts to apply Thom's cobordism theory [6] to the study of differentiable periodic maps. First, however, we shall outline our scheme for computing the oriented bordism groups of a space [1]. These preliminary remarks bear on a problem raised by Milnor [4]. A *finite manifold* is the finite disjoint union of compact connected manifolds with boundary each of which carries a C^{∞} -differential structure. The boundary of a finite manifold, B^n , is denoted by ∂B^n . A *closed manifold* is a finite manifold with void boundary. We now define the oriented bordism groups of a pair (X, A).

An oriented singular manifold in (X, A) is a map $f: (B^n, \partial B^n)$ \rightarrow (X, A) of an oriented finite manifold. Such a singular manifold bords in (X, A) if and only if there is a finite oriented manifold W^{n+1} and a map $F: W^{n+1} \rightarrow X$ such that $B^n \subset \partial W^{n+1}$ as a finite regular submanifold whose orientation is induced by that of W^{n+1} and such that $F \mid B^n = f$, $F(\partial W^{n+1} - B^n) \subset A$. From two such oriented singular manifolds (B_1^n, f_1) and (B_2^n, f_2) a disjoint union $(B_1^n \cup B_2^n, f_1 \cup f_2)$ is formed with $B_1^n \cap B_2^n = \emptyset$ and $f_1 \cup f_2 | B_i^n = f_i$, i = 1, 2. Obviously $-(B^n, f)$ $= (-B^n, f)$. We say that two singular manifold (B_1^n, f_1) and (B_2^n, f_2) are bordant in (X, A) if and only if the disjoint union $(B_1^n \cup -B_2^n, f_1 \cup f_2)$ bords in (X, A). By the well-known angle straightening device [5]this is shown to form an equivalence relation. The oriented bordism class of (B^n, f) is written $[B^n, f]$ and the collection of all such bordism classes is $\Omega_n(X, A)$. An abelian group structure is imposed on $\Omega_n(X, A)$ by disjoint union, and then following Atiyah we refer to $\Omega_n(X, A)$ as an oriented bordism group of (X, A). The weak direct sum $\Omega_*(X, A)$ $=\sum_{0}^{\infty} \Omega_n(X, A)$ is a graded right module over the oriented Thom cobordism ring Ω . For any $f: (B^n, \partial B^n) \rightarrow (X, A)$ and any closed oriented manifold V^m the module product is given by $[B^n, f][V^m]$ = $[B^n \times V^m, g]$ where g(x, y) = f(x). For any map $\phi: (X, A) \rightarrow (Y, B)$ there is an induced homomorphism $\phi_*: \Omega_n(X, A) \rightarrow \Omega_n(Y, B)$ given by $\phi_*([B^n, f]) = [B^n, \phi_f]$. There is also $\partial_*: \Omega_n(X, A) \to \Omega_{n-1}(A)$ given by $\partial_*([B^n, f]) = [\partial B^n, f] \partial B^n \rightarrow A$. Actually $\phi_*: \Omega_*(X, A) \rightarrow \Omega_*(Y, B)$ and $\partial_*: \Omega_*(X, A) \rightarrow \Omega_*(A)$ are Ω -module homomorphisms of degree 0 and -1.

¹ The authors are both Alfred P. Sloan Fellows. This work was partially supported by Air Research and Development Command Contract No. AF49(638)-72, Project No. 47500.