tion is assumed with respect to ϕ . The space would not be an Orlicz space, but an extension of the L_p space for p < 1. For the latter L_p spaces, it is known that the isometries are as described above.

References

1. S. Banach, Théorie des opérations linéaires, Warsaw, Monogr. Mat., Tom 1, 1932.

2. R. V. Kadison, Isometries of operator algebras, Ann. of Math. vol. 54 (1951) pp. 325-338.

3. M. A. Krasnosel'ski and Ya. Ruticki, *Convex functions and Orlicz spaces* (in Russian), Moscow, Gosudarstv. Izdat. Fiz.-Mat. Lit., 1958.

4. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. vol. 8 (1958) pp. 459-466.

5. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. vol. 100 (1961) pp. 29-43.

6. ——, Semi-inner-product spaces and isometries, (to be published).

7. W. Orlicz, Über eine gewisse Klasse von Räumen von Typus B, Bull. Inst. Acad. Polon. Sci. Ser. A (1932) pp. 207–220.

8. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. vol. 41 (1937) pp. 375-481.

STANFORD UNIVERSITY

ON THE RECURRENCE OF SUMS OF RANDOM VARIABLES

BY K. L. CHUNG¹ AND DONALD ORNSTEIN²

Communicated by J. L. Doob, September 19, 1961

We give a very short proof of the recurrence theorem of Chung and Fuchs [1] in one and two dimensions. This new elementary proof does not detract from the old one which uses a systematic method based on the characteristic function and yields a satisfactory general criterion. But the present method, besides its brevity, also throws light on the combinatorial structure of the problem.

Let N denote the set of positive integers, M that of positive real numbers. Let $\{X_n, n \in \mathbb{N}\}$ be a sequence of independent, identically distributed real-valued random vectors, and let $S_n = \sum_{\nu=1}^n X_{\nu}$. The value x is possible iff for every $\epsilon > 0$ there exists an n such that $P\{|S_n-x| < \epsilon\} > 0$; it is recurrent iff for every $\epsilon > 0$, $P\{|S_n-x| < \epsilon$ for infinitely many $n\} = 1$. It is shown in [1] that every possible value is recurrent if and only if for some $m \in \mathbb{M}$ we have

(1)
$$\sum_{n=1}^{\infty} P\{ |S_n| < m\} = \infty.$$

¹ This research is supported in part by the United States Air Force Office of Scientific Research under Contract AF 49(638)-265.

² This research is supported in part by the NSF Grant 16434.