ANALYTIC CONTINUATION OF THE PRINCIPAL SERIES

BY R. A. KUNZE AND E. M. STEIN ${ }^{1}$
Communicated by Edwin Hewitt, July 22, 1961

The purpose of this note is to announce results obtained in the analytic continuation of the (nondegenerate) "principal series" of representations of the $n \times n$ complex unimodular group. This study has as its starting point a similar one for the 2×2 real unimodular group previously carried out by us in [4].

We let G be the $n \times n$ complex unimodular group and C its diagonal subgroup consisting of elements $c=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$. A continuous character λ of C is given by

$$
\lambda(c)=\left(\frac{c_{1}}{\left|c_{1}\right|}\right)^{m_{1}} \cdots\left(\frac{c_{n}}{\left|c_{n}\right|}\right)^{m_{n}}\left|c_{1}\right|^{s_{1}} \cdots\left|c_{n}\right|^{s_{n}}
$$

where the sequences of integers $m_{1}, m_{2}, \cdots, m_{n}$ and complex numbers $s_{1}, s_{2}, \cdots, s_{n}$ are uniquely determined by setting $0 \leqq m_{1}+m_{2}$ $+\cdots+m_{n}<n$ and $s_{1}+s_{2}+\cdots+s_{n}=0$. Notice that λ is unitary, i.e., has values in the circle group, if $\operatorname{Re}\left(s_{j}\right)=0, j=1,2, \cdots, n$. Gelfand and Neumark have shown how to construct for each unitary λ an irreducible unitary representation $a \rightarrow T(a, \lambda)$ of the group G [2]. To describe these representations (i.e., the principal series) we follow the method but not the notation of [2].

Let V be the subgroup of G of elements having ones on the main diagonal and zeros above the main diagonal. Then G acts on V in a natural way; we denote the action of $a \in G$ on $v \in V$ by $v \tilde{a}$ (the transformations $v \rightarrow v \tilde{a}$ are linear fractional transformations when $n=2$ and generalizations thereof in higher dimensions). The operators of the representation $T(\cdot, \lambda)$ are given by

$$
T(a, \lambda) f(v)=m(v, a ; \lambda) f(v \tilde{a})
$$

where $m(v, a ; \lambda)$ is an appropriate multiplier, and the underlying Hilbert space is $L_{2}(V)$.

In order to state our results we introduce a tube \mathfrak{J} lying in the complex hyperplane $s_{1}+s_{2}+\cdots+s_{n}=0$. The base B of J is the smallest convex set which contains the points ($\sigma,-\sigma, 0,0, \cdots, 0$), $-1<\sigma<1$ and is invariant under all permutations of coordinates. A

[^0]
[^0]: ${ }^{1}$ This work was supported in part by the National Science Foundation-Research Grant NSF G 12847.

