AN EXAMPLE IN SUMMABILITY

BY W. K. HAYMAN AND ALBERT WILANSKY

Communicated by Edwin Hewitt, July 18, 1961

A matrix A is called *conservative* if Ax is convergent (its limit is called $\lim_A x$) whenever x is a convergent sequence, regular if $\lim_A x = \lim_{k \to 0} x$ for such x, coregular if conservative and $\chi(A) \equiv \lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} - \sum_{k=1}^{\infty} a_{k} \neq 0$ (here $a_k = \lim_{n \to \infty} a_{nk}$), and conull if $\chi(A) = 0$. The terms coregular and conull were introduced in [2].

A regular matrix is coregular, as is any matrix equipotent with a regular one. However, there exist coregular matrices not equipotent with any regular matrix. The example, due to Zeller, is given in [3]. We present here an example of a quite different nature.

(An open problem in the field is that of characterizing FK spaces which have a right to be called coregular. That $\{1\}$ be separated from the linear closure of $\{\delta^n\}$ is necessary but not sufficient.)

Restricting ourselves, for convenience, to triangles $(a_{nn} \neq 0, a_{nk} = 0$ for k > n), let $c_A = \{x: Ax \text{ is convergent}\}$. Then c_A is isomorphic with c, the space of convergent sequences, under $A: c_A \rightarrow c$. Thus c_A becomes a Banach space. If $c_A = c_B = F$ say, the norms on F due to A, B are equivalent since A = DB with $c_D = c$ and $||x||_A = ||Ax|| \le ||D|| ||Bx|| = ||D|| ||x||_B$.

If the functional lim is continuous on $c \subset c_A$ we extend it by the Hahn-Banach theorem to be defined on all of c_A . By a construction of Mazur [1, Theorem 2, p. 45], we obtain a matrix B with $\lim_B = \lim on c$, and $c_B = c_A$. (See [2] for proof that lim satisfies Mazur's condition.)

Clearly B is regular.

Conversely if such regular B exists it follows that \lim is continuous since $\lim = \lim_{B}$.

Thus, for our example, it is sufficient to construct a coregular matrix A such that lim is not continuous on c_A .

Let Y be the matrix such that $Yx = \{x_{n-1}+x_n\}$. Then (1/2) Y is a regular triangle. Let B be the matrix whose nth row is $\{t_1, t_2, \dots, t_{n-1}, 0, 0, \dots\}$ where $\{t_n\}$ is a suitably chosen sequence with $\sum |t_n| < \infty$. Then B is in the radical of the Banach algebra Δ of conservative triangular matrices. (See [4].) Note that Y has no inverse in this algebra. Finally, let A = B + Y. Then A is coregular. The norm associated with c_A is

$$||x|| = \sup_{n} \left| \sum_{k=1}^{n-1} t_k x_k + x_{n-1} + x_n \right|.$$