DERIVATIONS AND GENERATIONS OF FINITE EXTENSIONS

BY CARL FAITH ${ }^{1}$
Communicated by Nathan Jacobson, May 8, 1961

Let k be a given ground field, let $\mathfrak{F}_{\boldsymbol{r}}$ denote the class of finite (=finitely generated) field extensions of k of tr.d. (=transcendence degree) $\leqq r$, and let n be the function defined on $\mathcal{F}=\cup_{0}^{\infty} \mathscr{F}_{r}$ by: for any $L \in \mathcal{F}, \boldsymbol{n}(L)=$ the minimal number of generators of L / k. Classically it is known for suitable k that there exist purely transcendental extensions L / k having tr.d. 2 , and containing impure subextensions of tr.d. 2 , a fact which shows that in general \boldsymbol{n} is not monotone in \mathcal{F} for all k. The main result of this note establishes that these "counterexamples to Lüroth's theorem" constitute the only barriers to the monotonicity of n (see Theorem 2 for a precise statement). In particular it is demonstrated that \boldsymbol{n} is montone on \mathscr{F}_{1} for arbitrary k, a result which appears new even when restricted to the subclass \mathscr{F}_{0} of finite algebraic extensions of k.

A result of independent (and possibly more general) interest, which is proved below, and which is essential to our proof of the statements above, is that $\operatorname{dim} \mathfrak{D}$ is montone on \mathcal{F}, where for any $L \in \mathcal{F}, \mathscr{D}(L)$ is the vector space over L of k-derivations of L. The connection between n and $\operatorname{dim} \mathscr{D}$ is given in the lemma.

Lemma. Let L / k be a finite extension of tr.d. r, let $s=\operatorname{dim} \mathscr{D}(L)$, and let $n=n(L)$. Then $s \leqq n \leqq s+1$; if $s>r$, then $n=s .{ }^{2}$

Proof. It is known (e.g. [3, Theorem 41, p. 127]) that s is the smallest natural number ${ }^{3}$ such that there exist elements $u_{1}, \cdots, u_{s} \in L$ such that L is separably algebraic over the field $U=k\left(u_{1}, \cdots, u_{s}\right)$. Then $L=U(a)$ for some $a \in L$, so that $s \leqq n \leqq s+1$.

If $s>r$, there exists u_{q} in the set $S=\left\{u_{1}, \cdots, u_{s}\right\}$ such that u_{q} is algebraically dependent over k on the complement of u_{q} in S. For convenience renumber so that u_{s} is algebraic ${ }^{4}$ over the field $T=k\left(u_{1}, \cdots, u_{s-1}\right)$. A short argument shows that $L=U(a)$ for some

[^0]
[^0]: ${ }^{1}$ National Science Foundation Postdoctoral Fellow in the Institute for Advanced Study, on leave from Pennsylvania State University.
 ${ }^{2}$ Expressed in the other words: If L / k is not separably generated, then $n(L)$ $=\operatorname{dim} \mathscr{D}(L)$.
 ${ }^{3}$ Strictly speaking the notation should allow for the case $s=0$. By agreement then $U=k$.
 ${ }^{4}$ In case $s=1$ set $T=k$.

