DERIVATIONS AND GENERATIONS OF FINITE EXTENSIONS

BY CARL FAITH¹

Communicated by Nathan Jacobson, May 8, 1961

Let k be a given ground field, let \mathfrak{F}_r denote the class of finite (=finitely generated) field extensions of k of tr.d. (=transcendence degree) $\leq r$, and let n be the function defined on $\mathfrak{F} = \bigcup_{0}^{\infty} \mathfrak{F}_r$ by: for any $L \in \mathfrak{F}$, n(L) = the minimal number of generators of L/k. Classically it is known for suitable k that there exist purely transcendental extensions L/k having tr.d. 2, and containing impure subextensions of tr.d. 2, a fact which shows that in general n is not monotone in \mathfrak{F} for all k. The main result of this note establishes that these "counter-examples to Lüroth's theorem" constitute the only barriers to the monotonicity of n (see Theorem 2 for a precise statement). In particular it is demonstrated that n is montone on \mathfrak{F}_1 for arbitrary k, a result which appears new even when restricted to the subclass \mathfrak{F}_0 of finite algebraic extensions of k.

A result of independent (and possibly more general) interest, which is proved below, and which is essential to our proof of the statements above, is that dim \mathfrak{D} is montone on \mathfrak{F} , where for any $L \in \mathfrak{F}$, $\mathfrak{D}(L)$ is the vector space over L of k-derivations of L. The connection between **n** and dim \mathfrak{D} is given in the lemma.

LEMMA. Let L/k be a finite extension of tr.d. r, let $s = \dim \mathfrak{D}(L)$, and let n = n(L). Then $s \le n \le s+1$; if s > r, then $n = s^2$

PROOF. It is known (e.g. [3, Theorem 41, p. 127]) that s is the smallest natural number³ such that there exist elements $u_1, \dots, u_s \in L$ such that L is separably algebraic over the field $U = k(u_1, \dots, u_s)$. Then L = U(a) for some $a \in L$, so that $s \leq n \leq s+1$.

If s > r, there exists u_q in the set $S = \{u_1, \dots, u_s\}$ such that u_q is algebraically dependent over k on the complement of u_q in S. For convenience renumber so that u_s is algebraic⁴ over the field $T = k(u_1, \dots, u_{s-1})$. A short argument shows that L = U(a) for some

¹ National Science Foundation Postdoctoral Fellow in the Institute for Advanced Study, on leave from Pennsylvania State University.

² Expressed in the other words: If L/k is not separably generated, then $n(L) = \dim \mathfrak{D}(L)$.

³ Strictly speaking the notation should allow for the case s=0. By agreement then U=k.

⁴ In case s=1 set T=k.