BOOK REVIEWS

Norm ideals of completely continuous operators. By Robert Schatten. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 27. Berlin-Göttingen-Heidelberg, Springer-Verlag, 1960. viii +81 pp. DM 23.60.

Let \mathfrak{H} be an infinite-dimensional complex Hilbert space, and let \mathfrak{A} be the algebra of all bounded operators on \mathfrak{H} . An ideal (two-sided) \mathfrak{T} of \mathfrak{A} is made into a normed linear space by introducing a norm α on \mathfrak{T} . In general, the norm $\alpha(A)$ of $A \in \mathfrak{T}$ does not coincide with the bound ||A|| of the operator A. A norm α is a *crossnorm*, if $\alpha(A) = ||A||$ for all operators $A \in \mathfrak{T}$ of rank 1. α is *uniform*, if $\alpha(XAY) \leq ||X|| \cdot ||Y|| \cdot \alpha(A)$ for all $A \in \mathfrak{T}$ and $X, Y \in \mathfrak{A}$. An ideal \mathfrak{T} of \mathfrak{A} is called a *norm ideal*, if there is defined on \mathfrak{T} a uniform crossnorm with respect to which \mathfrak{T} is a Banach space. As indicated by its title, this monograph is a study of norm ideals of \mathfrak{A} formed by completely continuous operators.

After a preliminary discussion of completely continuous operators, the main part of the book begins with some general theorems on ideals of \mathfrak{A} : Calkin's theorem that, in case of separable \mathfrak{H} , every proper ideal of \mathfrak{A} is contained in the ideal \mathfrak{C} of all completely continuous operators; Kaplansky's theorem that if a left ideal of \mathfrak{A} formed by completely continuous operators is closed in the uniform topology and annihilates only the nullvector, it must coincide with all of \mathfrak{C} .

Next, the reader is introduced to two well-known ideals of \mathfrak{A} : the Schmidt class (σc) and the trace class (τc). In a natural way, uniform crossnorms σ , τ are defined on (σc), (τc) respectively by $\sigma(A) = (\sum_{i} ||Ax_{i}||^{2})^{1/2}$ and $\tau(A) = \sum_{i} ((A^{*}A)^{1/2}x_{i}, x_{i})$, where $\{x_{i}\}$ is a complete orthonormal system in \mathfrak{H} . With these respective norms σ and τ , (σc) and (τc) are norm ideals of \mathfrak{A} formed by completely continuous operators. The Banach space (τc), with τ as norm, may be interpreted as the conjugate space \mathfrak{C}^{*} of the Banach space \mathfrak{C} of all completely continuous operators, when the operator bound is taken as the norm in \mathfrak{C} . The Banach space \mathfrak{A} of all bounded operators on \mathfrak{H} , again with the operator bound as norm, may be interpreted as the second conjugate space \mathfrak{C}^{**} of \mathfrak{C} . But \mathfrak{C} is not the conjugate space of any Banach space, when \mathfrak{H} is infinite-dimensional.

The remaining part of the book deals mainly with the problem of determining all minimal norm ideals of \mathfrak{A} . A norm ideal is *minimal*, if none of its proper subspaces is a norm ideal. Let \mathfrak{R} be the ideal of \mathfrak{A} formed by all operators of finite rank. A crossnorm α on \mathfrak{R} is