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1. Introduction. In the study of mathematical economics and oper
ations research, we encounter the problem of determining the maxi
mum of the function 

(1) F(xu x2, • • • , xN) = fi(xi) + f2(x2) + - - - +/N(XN) 

over the region R defined by xi+x2 + • • • +XN = X> x^O. Under 
various assumptions concerning the ƒ», this problem can be studied 
analytically; cf. Karush [ l ; 2] , and it can also be treated analytically 
by means of the theory of dynamic programming [3]. 

I t is natural in this connection to introduce a "convolution" of two 
functions ƒ and g, h = ƒ * g, defined by 

(2) h(x) = max [f(y) + g(x - , ) ] . 

For purposes of general study, it is more convenient to introduce in
stead the convolution h=f®g defined by 

(3) h(x) = max [f(y)g(x - y)]. 

It is easy to see that the operation ® is commutative and associative 
provided that all functions involved are nonnegative. By analogy 
with the relation between the Laplace transform and the usual con
volution, fof(y)g(x — y)dy, it is natural to seek a functional transform 

(4) M(f) = F 

with the property that 

(5) M(f®g) = M(/)M(g), 

that is, 

(6) H(z) = F(z)G(z) 

where H, F, G are the transforms of A, ƒ, g respectively. 
We shall show that M exists and has a very simple form. In addi

tion, M~l has a very simple and elegant representation in a number 
of cases. More detailed discussions and extensions will be presented 
subsequently. 
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