A REPRESENTATION OF THE INFINITESIMAL GENERATOR OF A DIFFUSION PROCESS¹

BY L. L. HELMS

Communicated by J. L. Doob, May 5, 1961

0. Introduction. Let Ω be a connected locally compact metric space and let $C(\Omega)$ denote, as usual, the Banach space of bounded continuous real functions on Ω . A diffusion process (see [1] for definitions) is a semi-group $\{T_t; t>0\}$ of positivity preserving bounded linear transformations on $C(\Omega)$ which is strongly continuous for t>0. Such semigroups are also required to be of local character; i.e., if x vanishes in a neighborhood of a point $\xi \in \Omega$, then

$$Ax(\xi) = \lim_{t\downarrow 0} \frac{T_t x - x}{t} (\xi) = 0.$$

Consider an arbitrary element $x \in C(\Omega)$. If (i) the above limit exists for all η in a neighborhood W of ξ , (ii) the convergence is bounded on this neighborhood, and (iii) Ax is continuous on W, then x is said to be in the local domain of the operator A at ξ . x is said to be in the global domain, D(A), of the operator A whenever $W = \Omega$. Feller (see [1]) has posed the problem of characterizing the operator A. A local representation of such operators will be discussed in this note.

One of the essential properties of the operator A is the maximum property; i.e., $Ax(\xi) \leq 0$ whenever x is in the local domain of A at ξ and x has a null maximum at ξ . Before discussing the representation of A, a few remarks concerning the denseness in $C(\Omega)$ of the global domain of the operator A are in order. A null point of A is a point $\xi \in \Omega$ such that $Ax(\xi) = x(\xi) = 0$ for all x in the local domain of A at ξ . Feller has shown that the set N of null points is a closed set. He has also shown that if x vanishes outside a compact set which does not meet N, then there is a sequence X_{λ} in the global domain of A such that $X_{\lambda} \rightarrow x$ strongly [1]. Using this result, one can show that D(A) is locally dense in $C(\Omega)$ at each point $\xi \in \Omega - N$; i.e., if (i) $\xi \in \Omega - N$, (ii) W is a neighborhood of ξ such that $\overline{W} \subset \Omega - N$, and (iii) $x \in C(\Omega)$, then x can be approximated uniformly over \overline{W} by an element of D(A).

Another type of point at which the operator A may be degenerate is the absorption point; i.e., ξ is an absorption point if there is a real

 $^{^1}$ This research was sponsored by the National Science Foundation NSF Grant 12171.