A CLASS OF CONFORMAL METRICS

BY MAURICE HEINS

Communicated by J. L. Doob, April 24, 1961

1. Conformal metrics of curvature no greater than -4 are important in certain function-theoretic questions. Such metrics were introduced by Ahlfors [1] in his paper in which it was shown that the Bloch constant was at least as large as $3^{1/2}/4$. Ideas of this paper were applied to the Picard theorem and allied questions by R. M. Robinson [3]. The present communication summarizes the investigations of the author in which it is shown that the differential conditions appearing in Ahlfors's work may be replaced by conditions involving upper semi-continuity and mean-value properties. In this recasting the theory parallels that of subharmonic functions. The methods of Perron are available and serve as a basis for existence theorems for conformal metrics of constant curvature -4. The results developed in the present investigations have a number of function-theoretic consequences. We cite two. The first is that the Bloch constant exceeds $3^{1/2}/4$. The second is the following theorem:

Suppose that B is the class of nonconstant bounded analytic functions f on $\{|z| < 1\}$ and that $n_1(r; f)$ denotes the number of zeros of f', counted according to multiplicity, in $\{|z| < r\}$, 0 < r < 1. Then we have

(1.1)
$$\sup_{f \in B} \left\{ \limsup_{r \to 1} \frac{\int_{r_0}^r t^{-1} n_1(t; f) dt}{-\log(1 - r)} \right\} = 1, \qquad 0 < r_0 < 1.$$

2. **S-K metrics.** Let F be a Riemann surface and let S denote the family of uniformizers defining the conformal structure on F. By a conformal metric on F we mean a function λ with domain S assigning to $\sigma \in S$ a non-negative finite-valued function λ_{σ} whose domain is that of σ such that, if σ , $\tau \in S$ have images with nonempty intersection O and $\theta = \{(\sigma^{-1}(p), \tau^{-1}(p)) | p \in O\}$, then $\lambda_{\sigma}(z) = \lambda_{\tau}[\theta(z)] | \theta'(z) |$, $z \in \text{domain of } \theta$. If ϕ is a uniformizer, there exists a unique extension of λ to $S \cup \{\phi\}$ which is a conformal metric in the sense of the conformal structure $S \cup \{\phi\}$. We let λ_{ϕ} denote the image of ϕ with respect to λ so extended. The notion of upper semi-continuity of λ at a point $p \in F$ is referred to that of λ_{σ} ($p \in \text{image of } \sigma$) at the point $\sigma^{-1}(p)$. Similar remarks hold for differentiability properties, inequality, and vanishing. By an S-K metric is meant a conformal metric on F which is upper semi-continuous at each point of F and satisfies the condition