RESEARCH PROBLEMS

4. Richard Bellman: Theory of numbers

The question of the solubility in rational integers of the congruence $x^{2}+a x+b \equiv 0(p)$ can be decided by examining a polynomial congruence $a^{2}-4 b \equiv y^{2}(p)$. Similarly, one can study the solubility of $x^{3}+a x$ $+b \equiv 0(p)$ and $x^{4}+a x+b \equiv 0(p)$.

It is conjectured that the solubility in rational integers of $x^{5}+a x+b$ $\equiv 0(p)$ cannot be discussed in terms of any finite system of polynomial congruences involving the coefficients a and b, where the number of congruences and the degrees are independent of the prime p. (Received May 1, 1961.)

5. Richard Bellman: Control processes

Consider the problem of minimizing the quadratic functional

$$
\left.J(y)=\int_{0}^{T}[(x, A x)+2(x, B y)+(y, C y))\right] d t
$$

over all vector functions y related to x by means of the linear differential equation $d x / d t=A x+y, x(0)=c$, and subject to the component constraints $\left|y_{i}\right| \leqq m_{i}, i=1,2, \cdots, N$. Can one obtain an explicit analytic solution? (Received May 1, 1961.)

6. Herbert S. Wilf: Reciprocal bases for the integers

It is well known that every integer is the sum of reciprocals of distinct integers. Let us call a sequence $S:\left\{n_{1}, n_{2}, n_{3}, \cdots\right\}$ of distinct integers an R-basis if every integer is the sum of reciprocals of finitely many integers of S. It is clearly necessary that

$$
\sum n_{j}^{-1}=\infty
$$

though this is not sufficient, as can be seen by considering the primes. Yet it is not necessary to use all the integers, since $a, 2 a, 3 a, \cdots$ will obviously do, for any a.

Are the odd numbers an R-basis? Is every arithmetic progression an R-basis? Does an R-basis necessarily have a positive density? lower density? If S contains all integers and $f(n)$ is the least number required to represent n, what, in some average sense, is the growth of $f(n)$? (Received June 12, 1961.)

