MODERN DEVELOPMENTS IN THE GEOMETRY OF NUMBERS¹

HANS ZASSENHAUS

Modern geometry of numbers is chiefly concerned with two problems, the one is a *packing problem*, the other a *covering problem*. In both cases, an estimate of the density of a subset of some space is required.

The density notion of which I am speaking has its roots in the atomic theory of matter. It may be axiomatized as follows. Let ∂ be a non-negative real valued set function (possibly ∞) on a space E satisfying the conditions

(1)
$$\partial(\emptyset) = 0$$
 (\emptyset the empty subset),

(2)
$$\partial(A \cup B) \ge \partial(A) + \partial(B)$$
 if $A \cap B = \emptyset$.

Furthermore assume that there is a permutation group G (symmetry group) of E given. We say that the subset A of E has density $\partial(A)$ if

(3)
$$\partial(\alpha A) = \partial(A)$$
 $(\alpha \in G),$

(4)
$$\partial(\alpha A \cup B) = \partial(\alpha A) + \partial(B)$$
 if $\alpha A \cap B = \emptyset$; $(\alpha \in G)$.

Thus any symmetry applied to a point set with a density yields a point set of the same density. The union of two disjoint sets both of which have a density has itself a density and the density of the union is equal to the sum of the densities of the summands. For example, let $E = E_n$ be the *n*-dimensional Euclidean space. Let G be the group of the isometries (rigid movements) of the E_n . For any point set S, denote by n(t, S) the minimum number of points of S belonging to a hypercube:

$$a_i \leq x_i < a_i + t \qquad (i = 1, 2, \cdots, n).$$

Then

$$\partial(S) = \lim_{t \to \infty} \frac{n(t, S)}{t^n}$$

exists, possibly with $\partial(S) = \infty$ and the properties (1), (2) can be verified.

¹ An address delivered before the Stanford meeting of the Society on April 22, 1961, by invitation of the Committee to Select Hour Speakers at Far Western Sectional Meetings; received by the editors May 3, 1961.