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Recently there has been increasing interest in the local connectiv
ity of the group of all homeomorphisms of a manifold with boundary. 
Available tools of proof, however, seem to favor the case of a compact 
manifold [l ; 2] or else the use of the topology of uniform convergence 
of the group [3]. The present note extends such results to the groups 
of homeomorphisms of certain noncompact manifolds, furnished 
with the compact-open topology (also see [4]). 

If X is a manifold with boundary, let G{X) be the group of homeo
morphisms of X, with compact-open topology. G(X) is then a topo
logical transformation group on X. Let the statement that a space 
X is (respectively) locally connected, locally contractible or locally 
w-connected be abbreviated by the phase UX is Ph", i = l , 2 or 3 
respectively. 

THEOREM. Let X be a compact, connected, Hausdorff manifold with 
boundary, dim (X) > 1, and let F be a finite set of nonboundary points 
of X. If G(X) is Ph,h = l,2or3, then G(X-F) is Ph. 

In particular, this combines with the results of Hamstrom and 
Dyer [ l ] to show that if dim (X)=2 then G(X-F) is locally con
tractible; and with the results of Hamstrom [2] to show that if 
dim (X) = 3 then G(X — F) is locally w-connected, for all n. 

The following lemma will be used in the proof : 

LEMMA. Let X be a compact, connected, Hausdorff manifold with 
boundary, dim (X) > 1 ; and let F be a finite set of nonboundary points 
of X. Then G(X — F) is topologically isomorphic to G(X, F) 
= {gGG(X):g\FeG(F)}-

The proof of the lemma is an exercise in the compact-open topol
ogy; the hypothesis that X is a manifold is used in an application of 
the Jordan-Brouwer theorem. This proof is too long to be given here; 
it will appear elsewhere in another connection. 

PROOF OF THE THEOREM. Induction will be used on the number of 
points of F. Let Y be the set of nonboundary points of X, and let 
{XJ} be a sequence of distinct points of F. Define F» = Uj=1 {#/} and 
Gi= {gÇzG(X) : g(xj)=Xj if Xj&Ft), with the relative topology. 

(i) Gi is a principal fiber bundle over Y—Fi with projection 
p: Gi-^Y—Fii g—>g(xi+i) and fiber Gi+i, for i = 0, 1, • • • . The proof 
of this fact uses the bundle structure theorem: Gi+i is a closed sub
group of Gi, and Gi will be a bundle over Gi/d+i if G*+i has a local 
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