A MINIMAL DEGREE LESS THAN 0^{\prime}

BY GERALD E. SACKs ${ }^{1}$
Communicated by A. W. Tucker, April 13, 1961

Clifford Spector in [4] proved that there exists a minimal degree less than 0 ". J. R. Shoenfield in [3] asked: "Does there exist a minimal degree a such that $a \leqq 0^{\prime}$?" We show that the answer to his question is yes! Our notation is that of [4].

We say that b strictly extends a if b and a are distinct sequence numbers, and if the sequence represented by b extends the one represented by a; we express this symbolically as $\operatorname{SExt}(b, a)$. If $\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}$ is a sequence of sequence numbers such that for each i, a_{i+1} strictly extends a_{i}, then there is a unique function $f(n)$ such that for each i there is an m with the property that $\bar{f}(m)=a_{i}$; if $\left\{a_{0}, a_{1}, a_{2}, \cdots\right\} \subseteq S$, then we say $f(n)$ is a function associated with S. Spector in [4] obtained a function of minimal degree as the unique function associated with every member of a contracting sequence of sets of sequence numbers. Our construction is inspired by his, but it differs markedly from his in one respect: each one of our sets of sequence numbers will be recursively enumerable, whereas each one of his was recursive.

For each natural number c, let c^{*} be the unique, recursively enumerable set which has c as a Gödel number. There exists a recursive function $g(n)$ such that for each $c, g(c)$ is the Gödel number of the representing function of a recursive predicate $R_{c}(m, x)$ with the property that $x \in c^{*}$ if and only if $(E m) R_{c}(m, x)$. We define a recursive predicate $H(c, t, e, x, m, b, d)$ which is basic to our construction:

$$
\begin{aligned}
H(c, t, e, x, m, b, d) \equiv(i)_{i<2}(& \operatorname{SExt}\left((x)_{i}, t\right) \& R_{c}\left((m)_{i},(x)_{i}\right) \\
& \left.\& T_{1}^{1}\left((x)_{i}, e, b,(d)_{i}\right)\right) \& U\left((d)_{0}\right) \neq U\left((d)_{1}\right)
\end{aligned}
$$

We define a partial recursive function $Y(c, t, e)$:
$Y(c, t, e)= \begin{cases}\mu x H\left(c, t, e,(x)_{0},(x)_{1},(x)_{2},(x)_{3}\right) \\ & \text { if }(E x) H\left(c, t, e,(x)_{0},(x)_{1},(x)_{2},(x)_{3}\right) \\ \text { undefined otherwise. } & \end{cases}$
We define a recursively enumerable set of sequence numbers denoted by $W(c, t, e)$: (a) $t \in W(c, t, e)$ if t is a sequence number; (b) if $u \in W(c, t, e)$ and if $Y(c, u, e)$ is defined, then $(Y(c, u, e))_{0,0} \in W(c, t, e)$ and $(Y(c, u, e))_{0,1} \in W(c, t, e)$; and (c) every member of $W(c, t, e)$ is

[^0]
[^0]: ${ }^{1}$ The author is a predoctoral National Science Foundation Fellow.

