A SIMPLE TRIANGULATION METHOD FOR SMOOTH MANIFOLDS ${ }^{1}$

BY STEWART S. CAIRNS
Communicated by Raoul Bott, March 23, 1961

We first triangulate a compact closed m-manifold M^{m} of differentiability class $C^{r}(r>1)$ in a euclidean space $E^{\nu}=E^{m+n}$. The method is simpler than earlier methods (see References) and is applicable to a wider class of spaces (see (F) and (G) below).
(A) For a given $\eta>0$, let $\left(a_{1}, \cdots, a_{\mu}\right)$ be a set of distinct points on M^{m} such that each point of M^{m} is at distance $<\eta$ from at least one point a_{i}.

Let d be the euclidean distance function in E^{ν}. For each $k \in(1, \cdots, \mu)$, let

$$
\begin{align*}
& \bar{c}_{k}^{\nu}=\left\{x \in E^{\nu} \mid d\left(a_{k}, x\right) \leqq d\left(a_{i}, x\right),\right. \tag{1}\\
& \bar{\gamma}_{k}^{m}=M^{m} \cap \bar{c}_{k}^{\nu}=\left\{x \in M^{m} \mid d\left(a_{k}, x\right) \leqq d\left(a_{i}, x\right),\right. \tag{2}\\
&i=1, \cdots, \mu\},
\end{align*}
$$

Theorem. For each $p \in M^{m}$, let $\bar{\gamma}(p)$ be the intersection of all the sets $\bar{\gamma}_{\boldsymbol{z}}^{m}$ containing p. If η is small enough, $\{\bar{\gamma}\}=\left\{\bar{\gamma}(p) \mid p \in M^{m}\right\}$ is a subdivision of M^{m} into the closed cells of a complex.

Proof. Note first that if $i \neq k, d\left(a_{k}, x\right)=d\left(a_{i}, x\right)$ defines the normal bisecting ($\nu-1$)-plane $L_{k i}^{\nu-1}$ of the segment $a_{k} a_{i}$, and $d\left(a_{k}, x\right)<d\left(a_{i}, x\right)$ defines the half-space $H_{k i}^{\nu-1}$ of E^{ν} bounded by $L_{\boldsymbol{k} i}^{\nu-1}$ and containing a_{k}. Thus \bar{c}_{k}^{ν} is the closure of the open convex polyhedral ν-cell

$$
\begin{equation*}
c_{k}^{\nu}=\bigcap_{i \neq k} H_{k i}^{\nu}=\left\{x \in E^{\nu} \mid d\left(a_{k}, x\right)<d\left(a_{i}, x\right), i \neq k\right\}, \tag{3}
\end{equation*}
$$

which may be of infinite diameter.
(B) The set $\bar{\gamma}_{k}^{m}=\bar{c}_{k}^{\nu} \cap M^{m}$ is on the interior $B^{\nu}\left(a_{k}, \eta\right)$ of the sphere $S^{\nu-1}\left(a_{k}, \eta\right)$ of radius η about a_{k}.

For, by (A), each point of $M^{m}-\bar{B}^{\nu}\left(a_{k}, \eta\right)$ is closer to some $a_{i} \neq a_{k}$ than to a_{k}, and c_{k}^{ν} is the set of all points which are closer to a_{k} than to any $a_{i} \neq a_{k}$.

The fact that M^{m} is compact and of class C^{2} implies that there exists a number $\rho>0$ so small that no ($\nu-1$)-sphere of radius ρ tangent to M^{m} encloses a point of M^{m}. The cell c_{k}^{ν} therefore contains all points at distances $\leqq \rho$ from a_{k} on the normal n-plane $N^{n}\left(a_{k}\right)$ to M^{m} at a_{k}, since each such point is closer to a_{k} than to any $a_{i} \neq a_{k}$.
(C) Hence, if $L_{k i}^{\nu-1}$ (defined above) intersects $\bar{\gamma}_{k}^{m}$, then $L_{k i}^{\nu-1} \cap N^{n}\left(a_{k}\right)$ is either vacuous or at distance $>\rho$ from a_{k}.

[^0]
[^0]: ${ }^{1}$ This work was partly supported by NSF Grant G-14431.

