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Let R, be the ring of algebraic integers in an algebraic number
field K, let P be a prime ideal in Ry, and let Ry (or briefly R) denote
the ring of P-integral elements of K. Choose m& R, such that 7R is
the unique maximal ideal in R. Further let K* be the P-adic comple-
tion of K, with ring of P-adic integers R*. For a fixed finite group G,
we understand by the term “R,G-module” a left R,G-module which
as Ro-module is torsion-free and finitely-generated; analogous defini-
tions hold for RG- and R*G-modules.

Swan [9; 10] has recently proved that the Krull-Schmidt theorem
is valid for projective R*G-modules. We show here the following main
result, which is a consequence of some work of Maranda [3; 4]:

THEOREM 1. The Krull-Schmidt theorem holds for arbitrary R*G-

modules, that is, of My, -+ -, M, Ny, -+ -, N, are indecomposable
R*G-modules such that
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(the notation indicating external direct sums), then r=s, and after re-
numbering the {N,-} if need be, M1=N,, « - -, M,==N,.

To prove this and some corollaries we make use of the following
results of Maranda [3; 4].

(1) Let M and N be R*G-modules, and let e be the largest integer
for which P¢ divides the order of G. If M=N then

(2) M/meM = N/x¢N as (R*/m?R*)G-modules

for all d.

Conversely if (2) holds for some d>e, then M=N. Furthermore,
the same result holds for RG-modules.

(ii) Let M and N be RG-modules. Then M=N if and only if
R*M=R*N.

(iii) Let M be an R*G-module. If M is decomposable, so is M/m? M
for all d. Conversely if M/7*M is decomposable as (R*/w?R*)G-
module for some d>2¢, then M is also decomposable.
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