THE KRULL-SCHMIDT THEOREM FOR INTEGRAL GROUP REPRESENTATIONS

BY IRVING REINER ${ }^{1}$
Communicated by Paul T. Bateman, March 13, 1961

Let R_{0} be the ring of algebraic integers in an algebraic number field K, let P be a prime ideal in R_{0}, and let R_{P} (or briefly R) denote the ring of P-integral elements of K. Choose $\pi \in R_{0}$ such that πR is the unique maximal ideal in R. Further let K^{*} be the P-adic completion of K, with ring of P-adic integers R^{*}. For a fixed finite group G, we understand by the term " $R_{0} G$-module" a left $R_{0} G$-module which as R_{0}-module is torsion-free and finitely-generated; analogous definitions hold for $R G$ - and $R^{*} G$-modules.

Swan $[9 ; 10]$ has recently proved that the Krull-Schmidt theorem is valid for projective $R^{*} G$-modules. We show here the following main result, which is a consequence of some work of Maranda [3;4]:

Theorem 1. The Krull-Schmidt theorem holds for arbitrary $R^{*} G$ modules, that is, if $M_{1}, \cdots, M_{r}, N_{1}, \cdots, N_{s}$ are indecomposable $R^{*} G$-modules such that

$$
\begin{equation*}
M_{1}+\cdots+M_{r} \cong N_{1}+\cdots+N_{s} \tag{1}
\end{equation*}
$$

(the notation indicating external direct sums), then $r=s$, and after renumbering the $\left\{N_{j}\right\}$ if need be, $M_{1} \cong N_{1}, \cdots, M_{r} \cong N_{r}$.

To prove this and some corollaries we make use of the following results of Maranda [3;4].
(i) Let M and N be $R^{*} G$-modules, and let e be the largest integer for which P^{e} divides the order of G. If $M \cong N$ then

$$
\begin{equation*}
M / \pi^{d} M \cong N / \pi^{d} N \quad \text { as }\left(R^{*} / \pi^{d} R^{*}\right) G \text {-modules } \tag{2}
\end{equation*}
$$

for all d.
Conversely if (2) holds for some $d>e$, then $M \cong N$. Furthermore, the same result holds for $R G$-modules.
(ii) Let M and N be $R G$-modules. Then $M \cong N$ if and only if $R^{*} M \cong R^{*} N$.
(iii) Let M be an $R^{*} G$-module. If M is decomposable, so is $M / \pi^{d} M$ for all d. Conversely if $M / \pi^{d} M$ is decomposable as $\left(R^{*} / \pi^{d} R^{*}\right) G$ module for some $d>2 e$, then M is also decomposable.

[^0]
[^0]: ${ }^{1}$ This research was supported in part by the Office of Naval Research. The author wishes to thank Professor A. Heller for some helpful conversations.

