THE KRULL-SCHMIDT THEOREM FOR INTEGRAL GROUP REPRESENTATIONS

BY IRVING REINER¹

Communicated by Paul T. Bateman, March 13, 1961

Let R_0 be the ring of algebraic integers in an algebraic number field K, let P be a prime ideal in R_0 , and let R_P (or briefly R) denote the ring of P-integral elements of K. Choose $\pi \in R_0$ such that πR is the unique maximal ideal in R. Further let K^* be the P-adic completion of K, with ring of P-adic integers R^* . For a fixed finite group G, we understand by the term " R_0G -module" a left R_0G -module which as R_0 -module is torsion-free and finitely-generated; analogous definitions hold for RG- and R^*G -modules.

Swan [9; 10] has recently proved that the Krull-Schmidt theorem is valid for projective R^*G -modules. We show here the following main result, which is a consequence of some work of Maranda [3; 4]:

THEOREM 1. The Krull-Schmidt theorem holds for arbitrary R^*G -modules, that is, if $M_1, \dots, M_r, N_1, \dots, N_s$ are indecomposable R^*G -modules such that

(1)
$$M_1 + \cdots + M_r \cong N_1 + \cdots + N_s$$

(the notation indicating external direct sums), then r = s, and after renumbering the $\{N_j\}$ if need be, $M_1 \cong N_1, \dots, M_r \cong N_r$.

To prove this and some corollaries we make use of the following results of Maranda [3; 4].

(i) Let M and N be R^*G -modules, and let e be the largest integer for which P^e divides the order of G. If $M \cong N$ then

(2)
$$M/\pi^d M \cong N/\pi^d N$$
 as $(R^*/\pi^d R^*)G$ -modules

for all d.

Conversely if (2) holds for some d > e, then $M \cong N$. Furthermore, the same result holds for RG-modules.

(ii) Let M and N be RG-modules. Then $M \cong N$ if and only if $R^*M \cong R^*N$.

(iii) Let M be an R^*G -module. If M is decomposable, so is $M/\pi^d M$ for all d. Conversely if $M/\pi^d M$ is decomposable as $(R^*/\pi^d R^*)G$ -module for some d > 2e, then M is also decomposable.

 $^{^{1}}$ This research was supported in part by the Office of Naval Research. The author wishes to thank Professor A. Heller for some helpful conversations.