EQUIVALENCE OF NEARBY DIFFERENTIABLE ACTIONS OF A COMPACT GROUP

BY RICHARD S. PALAIS¹

Communicated by Deane Montgomery, April 5, 1961

In this note we will be concerned with the proof and consequences of the following fact: if ϕ_0 is a differentiable action of a compact Lie group on a compact differentiable manifold M, then any differentiable action of G on M sufficiently close to ϕ_0 in the C^1 -topology is equivalent to ϕ_0 .

1. Notation. In what follows differentiable means class C^{∞} . If M and V are differentiable manifolds, $\mathfrak{M}(M, V)$ is the space of differentiable maps of M into V in the C^{K} -topology where K is a positive integer or ∞ fixed throughout. We denote by Diff (M) the group of automorphisms of M topologized as a subspace of $\mathfrak{M}(M, M)$. As such it is a topological group. $\mathfrak{D}(M)$ is the subgroup of Diff (M) consisting of diffeomorphisms which are the identity outside of some compact set and $\mathfrak{D}_0(M)$ is the arc component of i_M , the identity map of M, in $\mathfrak{D}(M)$. If M is compact $\mathfrak{D}(M)$ is locally arcwise connected and $\mathfrak{D}_0(M)$ is open in $\mathfrak{D}(M)$ and in fact in $\mathfrak{M}(M, M)$. For a definition of the C^{κ} -topology and a proof of the statements made above, see [6]. If G is a Lie group we denote by $\alpha(G, M)$ the space of differentiable actions of G on M, i.e. continuous homomorphisms of G into Diff (M), topologized with the compact-open topology. If $\phi: g \rightarrow g^{\phi}$ is an element of $\mathfrak{A}(G, M)$ then by a theorem of D. Montgomery [2] $\tilde{\phi}: (g, m) \to g^{\phi}m$ is an element of $\mathfrak{M}(G \times M, M)$. Given $\phi \in \alpha(G, M)$ and $f \in \text{Diff}(M)$ then ϕ composed with the inner automorphism of Diff (M) defined by f is another element $f\phi$ of $\alpha(G, M)(g^{f\phi} = fg^{\phi}f^{-1})$. Clearly $(f, \phi) \rightarrow f\phi$ is jointly continuous² and defines an action of Diff (M) on $\alpha(G, M)$. We henceforth consider $\mathfrak{A}(G, M)$ as a Diff (M)-space and, a fortiori as a $\mathfrak{D}(M)$ and $\mathfrak{D}_0(M)$ space. Note that the orbit space $\alpha(G, M)/\text{Diff}(M)$ is just the set of equivalence classes of actions of G on M.

2. Statement of main theorem and consequences. The following theorem will be proved in §3.

THEOREM A. If M is a compact differentiable manifold and G is a compact Lie group then the $\mathfrak{D}_0(M)$ -space $\mathfrak{A}(G, M)$ admits local cross sections; i.e. given $\phi_0 \in \mathfrak{A}(G, M)$ there is a neighborhood U of ϕ_0 in

¹ Partially supported by NSF Grant No. G-14227.

² This follows from the proposition in [6, §1].