RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

ONTO INNER DERIVATIONS IN DIVISION RINGS

BY E. E. LAZERSON

Communicated by N. Jacobson, March 17, 1961

1. Introduction. Kaplansky [3] proposed the following problem: Does there exist a division ring Δ each element of which is a sum of additive commutators ab-ba? In [1] Harris gave a strongly affirmative solution to this problem by constructing division rings Δ in which each element c=ab-ba for some $a, b \in \Delta$. Recently Meisters [4] has studied rings $R \neq (0)$ in which for any triple of elements $a, b, c \in R$ with $a \neq b$ there exist solutions of the equation ax - xb = c. He has shown that (1) R is a division ring in which every noncentral element induces an onto inner derivation and (2) if R is separable algebraic over its center, then R is commutative. Actually one can prove the more general result that in a division ring R of the preceding type all algebraic elements (over the center) are central. (Hence if R is noncommutative, each noncentral element $t \in R$ is transcendental over the center of R and induces an onto inner derivation.)

In view of the above work it seems natural to investigate the question of existence of division rings possessing onto inner derivations. We give a partial answer to this question which implies (in some heuristic sense) that Harris' examples (at least for char. p > 0) are normative rather than pathological. More precisely we sketch a proof of the following theorem: For each division ring Δ of char. p > 0 one can construct an extension division ring E with the property that there exists an element $t \in E$ (lying in the centralizer of Δ) whose associated inner derivation D_t is an onto map: $D_t(E) = E$.

2. **Preliminaries.** We shall make consistent use of the following facts: (1) Any noncommutative ring R with an identity having the common right multiple property has a right quotient ring Q(R), i.e., every element of Q(R) has the form ab^{-1} , $a, b \in R$, b regular, and all regular elements of R are invertible in Q(R). (2) If Δ is a division ring and D a derivation of Δ into itself, then $\Delta[x; D]$, the ring of differential polynomials over Δ in the indeterminate x, has the com-