ON THE PRIME IDEALS OF SMALLEST NORM IN AN IDEAL CLASS mod f OF AN ALGEBRAIC NUMBER FIELD

BY G. J. RIEGER
Communicated by I. J. Schoenberg, February 3, 1961

In 1947, Linnik [3] proved the following theorem:
Theorem (of Linnik). There exists an absolute constant c such that in every prime residue class mod k there is a prime number p with $p<k^{c}$.

A simplified proof of this theorem was given by Rodosskii [7] whose proof (similar to Linnik's) rests basically on (A) functiontheoretic lemmas, (B) theorems on L-functions, (C) estimates of character sums, and (D) a sieve method. The theorems (B) can be classified and characterized as follows:
(B1) order of magnitude of the L-functions [5, Chapter 4 , Satz 5.4],
(B2) existence of at most one exceptional zero [5, Chapter 4, Satz $6.9]$,
(B3) Siegel's theorem on the exceptional zero [5, Chapter 4, Satz 8.1],
(B4) functional equation of the L-functions [5, Chapter 7, Satz 1.1],
(B5) number of zeros in vertical strips [5, Chapter 7, Satz 3.3],
(B6) explicit formulae [5, Chapter 7, Satz 4.1, Satz 6.1].
Recently, I have been able to prove the following generalization of Linnik's theorem which I had conjectured elsewhere [6, p. 168]:

Theorem 1. For every algebraic number field K there exists a constant $c(K)$, depending on K only, such that in every ideal class mod \mathfrak{f} (in the narrowest sense) there is a prime ideal \mathfrak{p} with $N \mathfrak{p}<N f^{c(K)}$.

The skeleton of the proof of Theorem 1 can be taken from Rodosskii's proof; the lemmas (A) are the same; the generalized theorems (B1) resp. (B3) resp. (B4) resp. (B5) resp. (C) resp. (D) can be found in [1] and [4] resp. [4] resp. [1] resp. [1] resp. [2] resp. [6]; the remaining theorems (B2) and (B6) can easily be generalized. The details of the proof of Theorem 1 are then essentially the same as in [7]. This completes the outline of the proof of Theorem 1.

