AREA OF DISCONTINUOUS SURFACES

BY CASPER GOFFMAN¹

Communicated by J. W. T. Youngs, January 19, 1961

1. A general theory of surface area, [1; 2], exists for the nonparametric case. Thus, area is defined for all measurable f on the unit square $Q = I \times J$. The area functional is lower semi-continuous with respect to almost everywhere convergence and agrees with the Lebesgue area for continuous f. On the other hand, for continuous parametric mappings T of the closed unit square Q into euclidean 3-space E_3 , Lebesgue area is not lower semi-continuous with respect to almost everywhere convergence nor even, as C. J. Neugebauer has shown, [3], with respect to pointwise convergence.

It thus appears that a theory of parametric surface area must be restricted to surfaces which cannot deviate too far from the ones given by continuous mappings. In this paper, we develop the beginnings of a theory for a class of surfaces which we call linearly continuous.

2. Let f be a real function defined on Q and, for every u, let f_u be defined by $f_u(v) = f(u, v)$ and let f_v be defined similarly. Then f is linearly continuous if f_u is continuous for almost all u and f_v is continuous for almost all v. A mapping T: x = x(u, v), y = y(u, v), z = z(u, v) of Q into E_3 is linearly continuous if x, y, z are linearly continuous.

A sequence $\{f_n\}$ of functions converges linearly to a function f if $(f_n)_u$ converges uniformly to f_u for almost all u, and $(f_n)_v$ converges uniformly to f_v for almost all v. A sequence $T_n: x = x_n(u, v), y = y_n(u, v), z = z_n(u, v)$ converges linearly to a mapping T: x = x(u, v), y = y(u, v), z = z(u, v) if $\{x_n\}, \{y_n\}, \{z_n\}$ converge linearly to x, y, z, respectively.

Let P be the set of quasi linear mappings from Q into E_3 . For p, $q \in Q$ let

$$d(p, q) = \inf[k: \text{ there are sets } A_k \subset I, B_k \subset J,$$

$$m(A_k) > 1 - k, m(B_k) > 1 - k, \text{ and } | p(u, v) - q(u, v) | < k$$

on $(A_k \times J) \cup (I \times B_k)].$

It is easy to verify that P is a metric space and that $\{p_n\}$ converges to p in this space if and only if it converges linearly. Let E be the elementary area functional on P. It is not hard to prove

¹ Research supported by National Science Foundation Grant No. NSF G-5867.