A CONTINUOUS FUNCTION WITH TWO CRITICAL POINTS

BY NICOLAAS H. KUIPER¹

Communicated by R. P. Boas, February 6, 1961

A real C^{*}-function $f: X \to \mathbf{R}$ on an *n*-dimensional C^{*}-manifold with $s \ge 0$, is called C^{*}-nondegenerate C^{*}-ordinary at a point $p \in X$, in case a system of *n* C^{*}-coordinates (C^{*}-functions) ϕ_1, \cdots, ϕ_n exists, which defines a C^{*}-diffeomorphism κ of some neighborhood V(p) of p into \mathbf{R}^n , and such that for some constant $\lambda_p > 0$

$$(1)\phi_i(p) = 0, i = 1, \cdots, n; \phi_n(q) = \lambda_p \{f(q) - f(p)\}$$

for $q \in V(p) \subset X$.

If C^{*}-coordinates and $\lambda_p > 0$ exist such that

(2)

$$\phi_i(p) = 0, \qquad i = 1, \dots, n;$$

$$-\sum_{1}^{r} \phi_i^2(q) + \sum_{r+1}^{n} \phi_j^2(q) = \lambda_p \{ f(q) - f(p) \}$$

then the function is called C^{*}-critical of index r and C^{*}-nondegenerate at p.

A function which is C^{*}-nondegenerate at every point $p \in X$ is called a C^{*}-nondegenerate function.

We will restrict our considerations to the topological case s=0 of continuous functions on topological manifolds and we will omit C^{0} from the notation in the sequel. By function we will mean continuous function, etc.

A compact manifold without boundary is called a *closed* manifold. A nondegenerate function on a closed manifold has at least one critical point p_1 of index n and one critical point p_0 of index 0, corresponding respectively with the maximum and the minimum of the function. We prove the

THEOREM. If X is a closed n-dimensional manifold and $f: X \rightarrow \mathbf{R}$ a continuous nondegenerate function with exactly two critical points, then X is homeomorphic to the n-sphere $S^{n,2}$

¹ The author has a research grant from the National Science Foundation, NSF-G-13989.

² Reeb [2] proved the corresponding theorem for the differentiable case. Morse [1] proved that X is a homotopy-sphere, and he also has a proof of the theorem we present (unpublished as yet).