INTEGRATION WITH RESPECT TO OPERATOR-VALUED FUNCTIONS

BY GREGERS L. KRABBE¹

Communicated by E. J. McShane, September 23, 1960

1. Introduction. Let J be a compact subinterval of the real line. N. Wiener [7] has introduced the Banach algebra $W_p(J)$ of all complex-valued functions f such that $V_p(f) \neq \infty$, where

$$V_{p}(f) = \sup \left(\sum_{k=1}^{n} \left| f(x_{k}) - f(x_{k-1}) \right|^{p} \right)^{1/p},$$

the supremum being taken over all finite partitions of J (see §7). We shall construct a family of continuous homomorphisms of the Banach algebra $W_p(J)$; this connects with the theory of multipliers of Fourier series (see §4). Our basic problem is to integrate (in the uniform operator-topology) with respect to functions that are not of bounded variation.

Given a fixed measurespace (a, \mathfrak{A}, μ) , let \mathfrak{E}_r denote the Banach algebra of all continuous endomorphisms of $L_r(a, \mathfrak{A}, \mu)$; the relation $1 < r < \infty$ is implied throughout. Let E_r be a function on J which assumes its values in \mathfrak{E}_r , and let f belong to the class D(J) of all simply-discontinuous,² complex-valued functions. The following expression

(1)
$$(\mathfrak{E}_r) \int f(\lambda) \cdot dE_r(\lambda)$$

will denote what T. H. Hildebrandt [1, p. 273] calls the "modified Stieltjes integral"; it is the limit of a certain net of Stieltjes sums (this net is directed as in the Pollard-Moore integral [1, p. 269]). The word "limit" here implies convergence in the norm-topology of \mathfrak{E}_r . It is not hard to show that the integral (1) converges when E_r is of bounded variation³; this situation is most familiar in the case r=2, when E_r is a resolution of the identity in the Hilbert space $L_2(a, \mathfrak{A}, \mu)$. Henceforth, we will allow the possibility that E_r not be of bounded variation (this possibility becomes a fact in Theorem D below).

¹ This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49(638)-505.

² That is, having on J at most discontinuities of the first kind.

^a In the sense of Hille-Phillips [2, p. 59]. Bounded variation is a less restrictive condition than the bounded semi-variation hypothesis required in certain integration theories (e.g., Bartle's article in the Studia Math. vol. 15 (1956) pp. 337-352).