SIMULTANEOUS RATIONAL APPROXIMATIONS TO ALGEBRAIC NUMBERS

BY L. G. PECK
Communicated by N. C. Ankeny, December 17, 1960

Let K be an algebraic number field of degree $n+1$ over the rationals. The conjugates $K^{(0)}, K^{(1)}, \cdots, K^{(n)}$ are arranged so that $K^{(0)}, K^{(1)}, \cdots, K^{(r)}$ are real and

$$
K^{(r+s+k)}=\overline{K^{(r+k)}}, \quad(k=1,2, \cdots, s)
$$

Here $r+2 s=n$. It will be assumed throughout that $r \geqq 0$, so that $K^{(0)}$ is real. Numbers in K are denoted by Greek letters, superscripts being used for the corresponding conjugates. We shall frequently omit the superscript ${ }^{(0)}$; this identification of K with $K^{(0)}$ will cause no confusion. Trace and norm of elements of K are denoted by S and N, respectively.

Let $\beta_{0}, \cdots, \beta_{n}$ be elements of K which are linearly independent over the rationals. It is well known that infinitely many sets of rational integers ($q_{0}, q_{1}, \cdots, q_{n}$) can be found satisfying,

$$
\begin{equation*}
q_{0}>0, \quad \text { g.c.d. }\left(q_{0}, q_{1}, \cdots, q_{n}\right)=1 \tag{1}
\end{equation*}
$$

and (omitting the superscript ${ }^{(0)}$)

$$
\begin{equation*}
\left|\frac{\beta_{j}}{\beta_{0}}-\frac{q_{j}}{q_{0}}\right|<C q_{0}^{-1-1 / n}, \quad(j=1, \cdots, n) \tag{2}
\end{equation*}
$$

with the constant $C=1$. It will be shown here how to determine all solutions of (1), (2). From this will be deduced not only the known fact that if C is too small (2) has no solutions, but also the hitherto unknown result that the sharper inequalities

$$
\begin{align*}
& \left|q_{0} \beta_{j}-q_{j} \beta_{0}\right|<C q_{0}^{-1 / n}\left(\log q_{0}\right)^{-1 /(n-1)}, \quad(j=1, \cdots, n-1), \tag{3}\\
& \left|q_{0} \beta_{n}-q_{n} \beta_{0}\right|<C q_{0}^{-1 / n},
\end{align*}
$$

have infinitely many solutions.
This result sharpens some of the conclusions of Cassels and Swin-nerton-Dyer (I), but does not furnish any further evidence for or against the conjecture of Littlewood which is considered in their paper.

A number of interesting problems can be raised in connection with (3). In one direction it can be asked whether $n-1$ of the inequalities
(2) can be improved with factors which are not all the same; e.g.,

